2002/2003 Final Examination MATHS 104

	<u>Question 1</u> Evaluate
(a)	$\frac{dy}{dx} \text{ if } y = (2x+1)^{x+2}.$
(b)	$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 + 4x - 5}$
(c)	$\frac{dy}{dx} \text{if } y = \log_2(8x+5)^2.$
(d)	$\frac{dy}{dx}$ at the point (2,1) if $x + xy + y = 5$.
	<u>Question 2</u> (a) If the marginal cost of a firm is given by
	C'(q) = 0.002q + 2
(i)	Find the cost function of the firm if the fixed cost is
(ii)	Find the cost of producing 1000 units.
(b)	If in addition the firm sells all units it produces at \$8 per unit. Find the revenue and profit as a function of α
(111)	Find the revenue and profit as a function of q .
(1V)	Find the production volume q so that the profit is
(v)	What is the value of the maximum profit?
	Question 3
(a)	Find the area between the curve $y = x^2 + 1$ and the line $y = 2x + 9$.

(b) For the demand relation $q = (1 - p - p^2)$. Find the elasticity of the

demand when $p = \frac{l}{4}$ and classify it.

Find the value of p for which the elasticity $\eta = -1$ in part (b).

Question 4

(c)

(a) The supply and demand functions for a certain product are S: p = 20 + 2.5q

$$D: p = \frac{280}{q+2}$$

Determine the consumer's and producers' surplus, assuming the market equilibrium has been established.

The demand function of a firm's product is p = 45 - 0.12q. The cost **(b)** of producing q units is given by C(q) = 300 + 5q. Find the average profit over the sales interval q = 100 to q = 200.

Question 5 [10 marks]

Evaluate the following:

(a)
$$\int \left(e^{2x+1} + \frac{1}{x-1} + (2x+3)^3 \right) dx$$
.
(b) $\int x^2 e^{3\ln x} dx$.

(b)

(c)
$$\frac{d}{dx}\left(\int_{1}^{2} x^{2} \ln \sqrt{x^{2}+1}\right).$$

(d)
$$\int (x+l)e^x dx.$$

(e)
$$\frac{d}{dx}\left(\int_{x}^{2}e^{t^{2}}dt\right).$$