2002/2003
 Final Examination
 MATHS 104

Question 1

Evaluate
(a)
(b)

$$
\frac{d y}{d x} \text { if } y=(2 x+1)^{x+2} .
$$

$$
\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}+4 x-5}
$$

(c)
$\frac{d y}{d x}$ if $y=\log _{2}(8 x+5)^{2}$.
(d) $\quad \frac{d y}{d x}$ at the point $(2,1)$ if $x+x y+y=5$.

Question 2

(a) If the marginal cost of a firm is given by

$$
C^{\prime}(q)=0.002 q+2
$$

(i)
$\$ 50$.
(ii) Find the cost of producing 1000 units.

If in addition the firm sells all units it produces at $\$ 8$ per unit.
Find the revenue and profit as a function of q.
Find the production volume q so that the profit is
maximum.
(v)

What is the value of the maximum profit?

Question 3

(a) Find the area between the curve $y=x^{2}+1$ and the line $y=2 x+9$.
(b) For the demand relation $q=\left(1-p-p^{2}\right)$. Find the elasticity of the demand when $p=\frac{1}{4}$ and classify it.

Find the value of p for which the elasticity $\eta=-1$ in part (b).

Question 4

(a) The supply and demand functions for a certain product are

$$
\begin{aligned}
& S: p=20+2.5 q \\
& D: p=\frac{280}{q+2}
\end{aligned}
$$

Determine the consumer's and producers' surplus, assuming the market equilibrium has been established.
(b) The demand function of a firm's product is $p=45-0.12 q$. The cost of producing q units is given by $C(q)=300+5 q$. Find the average profit over the sales interval $q=100$ to $q=200$.

Question 5 [10 marks]

Evaluate the following:
(a)

$$
\int\left(e^{2 x+1}+\frac{1}{x-1}+(2 x+3)^{3}\right) d x
$$

(b) $\quad \int x^{2} e^{3 \ln x} d x$.
(c) $\quad \frac{d}{d x}\left(\int_{1}^{2} x^{2} \ln \sqrt{x^{2}+1}\right)$.
(d) $\quad \int(x+1) e^{x} d x$.
(e)

$$
\frac{d}{d x}\left(\int_{x}^{2} e^{t^{2}} d t\right)
$$

