
Fin 320 Sections: 4,5 and 11

ch	ap		Λ.	-41	:	_
UII	av	LEI	v	JLI	ın	e

- 12.1 The Expected Return of a Portfolio
- 12.2 The Volatility of a Portfolio
- 12.3 Measuring Systematic Risk
- 12.4 Putting it All Together: The Capital Asset Pricing Model

Copyright © 2012 Pewron Education

Learning Objectives

- Calculate the expected return and volatility (standard deviation) of a portfolio
- Understand the relation between systematic risk and the market portfolio
- Measure systematic risk
- Use the Capital Asset Pricing Model (CAPM) to compute the cost of equity capital for a stock

Creynger © 2012 Pearson Educator

11.10

Dr. Nadhem Al-Saleh

12.1 The Expected Return of a Portfolio

- In Chapter 11 we found:
 - For large portfolios, investors expect higher returns for higher risk.

- The same does not hold true for individual stocks.
- Stocks have both unsystematic and systematic risk
 - only systematic risk is rewarded
 - · rational investors should choose to diversify.

Copyright C 2012 Presion Education

6

12.1 The Expected Return of a Portfolio

- · Portfolio weights
 - The fraction of the total portfolio held in each investment in the portfolio:

 $w_i = \frac{\text{Value of investment } i}{\text{Total value of portfolio}}$ (Eq. 12.1)

- Portfolio weights add up to 100% (that is, w1 + w2 + ... + wN = 100%)

Dayright © 2012 Pastron Education

12.1 The Expected Return of a Portfolio

 Portfolio weights for a portfolio of 200 shares of Apple at \$200 per share and 100 shares of Coca-Cola at \$60 per share:

$$w_{Apple} = \frac{200 \times \$200}{100,000} = 40\%$$
 $w_{Coco-Colo} = \frac{1000 \times \$60}{100,000} = 60\%$

noyagni E 2012 Pharton Educate

12.1 The Expected Return of a Portfolio

- The return on a portfolio, Rp
 - The weighted average of the returns on the investments in the portfolio:

$$R_p = w_1 R_1 + w_2 R_2 + \dots + w_n R_n$$
 (Eq. 12.2)

Copyright C 2012 Pearson Educate

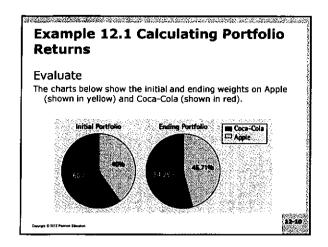
12.7

Example 12.1 Calculating Portfolio Returns

Problem:

- Suppose you invest \$100,000 and buy 200 shares of Apple at \$200 per share (\$40,000) and 1000 shares of Coca-Cola at \$60 per share (\$60,000).
- If Apple's stock goes up to \$240 per share and Coca-Cola stock falls to \$57 per share and neither paid dividends, what is the new value of the portfolio?
- What return did the portfolio earn?

Deputy © 2012 Premior Educate



Example 12.1 Calculating Portfolio Returns

Problem (cont'd):

- Show that Eq. 12.2 is true by calculating the individual returns of the stocks and multiplying them by their weights in the portfolio.
- If you don't buy or sell any shares after the price change, what are the new portfolio weights?

Copyright © 2012 Featroin Educate

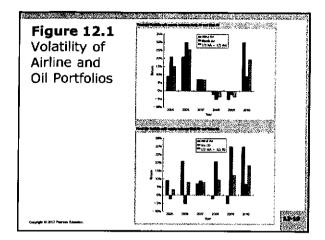
Copyright © 2012 Pleasure Edination	13-11
(Eq. 12	.3)
$E[R_p] = w_1 E[R_1] + w_2 E[R_2] + \dots + w_n E[R_n]$	outovani jugatasjo ganiiki
The expected return of a portfolio The weighted average of the expected returns of the investments within it, using the portfolio weights:	A TERROSCOCIO
12.1 The Expected Return of a Portfolio	

Term	Concept	٠	1. (, 840		٠			٠,	
Partialio weight	The pulphys seem	liReni in ye	ur portiolic		-	Hebra Total	of Irres Native of I	ment /		7	
Porstollo reliura	The total roturn or for the roturns of and Stair weights		er portione, carilles la i	accounting the porticio	# -	mβ	+ 144	+	+, 44,		
Portificial expensions return	The source you can given the expects particle and the r in each	d reflecting cal	the second	ios in that	E A	1==	€(4)	+ 10,6	A) +	 + 14.	E(A)

Example 12.2 Portfolio Expected Return	d
Problem: • Suppose you invest \$10,000 in Boeing (BA) stock, and \$30,000 in Merck (MRK) stock. You expect a return of for Boeing, and 16% for Merck. What is the expected return for your portfolio?	of 10%
Copyright C 2911 Prior von Education.	i:-d
Example 12.2 Portfolio Expected Return	
Execute:	-
The expected return on your portfolio is:	-
$E[R_P] = w_{RA} E[R_{BA}] + w_{MRK} E[R_{MRK}]$ $E[R_P] = 0.25 \times 10\% + 0.75 \times 16\% = 14.5\%$	
•	
Copyright © 2013 Felenium (Aucusus	
12.2 The Volatility of a Portfolio	
• Investors care about return, but also ris	
 When we combine stocks in a portfolio, some risk is eliminated through diversification. 	
 Remaining risk depends upon the degree to which the stocks share common risk.) · · · · · · · · · · · · · · · · · · ·
 The volatility of a portfolio is the total risk, measured as standard deviation, of the portfolio. 	-
Dapynga O 2011 Mariana (Adjamu	

- Table 12.2 shows returns for three hypothetical stocks, along with their average returns and volatilities.
- Note that while the three stocks have the same volatility and average return, the pattern of returns differs.
- When the airline stocks performed well, the oil stock did poorly, and when the airlines did poorly, the oil stock did well.

Depute 0 2012 Preven Education

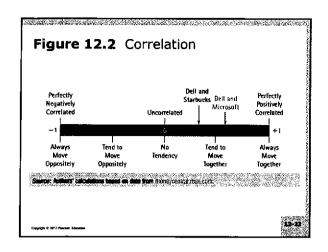

Table 12.2	Returns for Three Stocks,	,
and Portfolio	s of Pairs of Stocks	

		: %	실	Ste	k Ret	MINE	Á				(t)				(2)		
ँ	Yea			North /	•	West A		Tex 0	77.			W.A.			ib	T.O.	
	2005		9	21%		9%		-27	F.		15.0%				3.5%		
	2006	- ((- 1) ()	Ğ.	30%	ri (21%		~ 59		3.7	25.5%		ġ.		BOX		
	2007		ė.	- 73	2.5	. 7%	Ϋ́	97		Ų.	7.0%	Ç.			8.0%	G,	
	2006	٩,	Ž,	-37	133	ਾ 😷	١j.	217	10.1	.73	-3.5K	٠.	Ç.,	- (9.5%		
	2009		À.	94		30%	91	30%) (187		- 3.5% 19.5%	, 1 m	V.	38	12.5% 18.5%		
Am	, Ant		4	10.0%		10.0%		10.0%		7	10.0%	- 1			10.0%		
Vol	Willy		3.	13.4%	130	13.4%	1.5	13.4%		10	12.1%	is t			3.1 K		
		* 77				19.5			7		-				- 5	- 1	

12.2 The Volatility of a Portfolio

- Table 12.2 shows returns for two portfolios:
 - An equal investment in the two airlines, North Air and West Air.
 - An equal investment in West Air and Tex Oil.
- Average return of both portfolios is equal to the average return of the stocks
- Volatilities (standard deviations) are very different.

apyright © 2013 Peamon Education


- This example demonstrates two important truths.
 - By combining stocks into a portfolio, we reduce risk through diversification.
 - The amount of risk that is eliminated depends upon the degree to which the stocks move together.
- Combining airline stocks reduces volatility only slightly compared to the individual stocks.
- Combining airline and oil stocks reduces volatility below that of either stock.

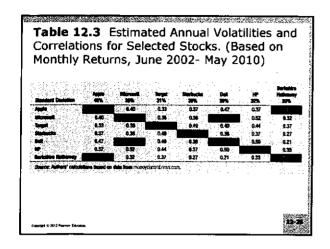
Copyright ID 2012 Passion Education

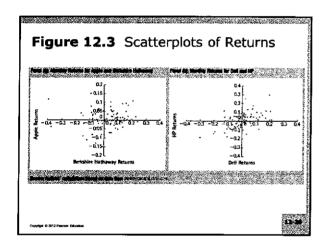
12.2 The Volatility of a Portfolio

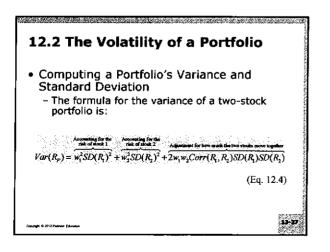
- Measuring Stocks' Co-movement: Correlation
 - To find the risk of a portfolio, we need to know
 - . The risk of the component stocks
 - The degree to which they move together
 - Correlation ranges from -1 to +1, and measures the degree to which the returns share common risk.

inpelgis D 2012 Paston Educac

· Correlation is scaled covariance and is defined as


$$Corr(R_i, R_j) = \frac{Cov(R_i, R_j)}{SD(R_i)SD(R_j)}$$


Crayngin C 2012 Prenson Eastern


12.2 The Volatility of a Portfolio

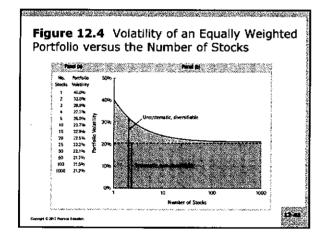
- Stock returns tend to move together if they are affected similarly by economic events.
 - Stocks in the same industry tend to have more highly correlated returns than stocks in different industries.
- Table 12.3 shows several stocks'
 - Volatility of individual stock returns
 - Correlation between them
 - The table can be read across rows or down columns.

Concess G 2017 Parrow Faculty

12.2 The Volatility of a Portfolio • The three parts of Eq. 12.4 each account for an important determinant of the overall variance of the portfolio: - the risk of stock 1 - the risk of stock 2 - an adjustment for how much the two stocks move together (their correlation, given as Corr(R1,R2)). 12.2 The Volatility of a Portfolio • Expected return of a portfolio is equal to the weighted average expected return of its stocks. · Risk of the portfolio is lower than the weighted average of the individual stocks' volatility, unless all the stocks all have perfect positive correlation with each other - Diversification **Example 12.4 Reducing Risk** Without Sacrificing Return Problem: Based on historical data, your expected annual return for Target is 6% and for Berkshire Hathaway is 5%. What is the expected return and risk (standard deviation) of your portfolio if you only hold Target? If you split your money evenly between Target and Berkshire, what is the expected return and risk of your portfolio?

PAGE 18 AND	a
Example 12.4 Reducing Risk	
Without Sacrificing Return	
,	
Solution:	
Plan:	
A. From Table 12.3 we can get the standard deviations of	
Target and Berkshire stock along with their correlation: SD(R _{TGT})=0.31, SD(R _{BRK})=0.20, Corr(R _{TGT} ,R _{BRK})=0.37	
B. With this information and the information from the problem,	
we can compute the expected return of the portfolio using Eq. 12.3 and its variance using Eq. 12.4	
2008	
Copyrigm © 2012 Fueron Education.	
"	
	1
Example 12.4 Reducing Risk	
Without Sacrificing Return	
Without Sacrificing Return	
Execute:	
For the all-Target portfolio, we have 100% of our money in	
Target stock, so the expected return and standard deviation of our portfolio is simply the expected return and standard	
deviation of that stock:	
$E[R_{TGT}] = 0.06, SD(R_{TGT}) = 0.31$	
Sec Sec.	
C. virtue	
w/www.com	
Copyright D 2012 Previous Education	
7508708	
Example 12.4 Reducing Risk	
Without Sacrificing Return	
without Sacrificing Return	
Execute (cont'd):	
However, when we invest our money 50% in Berkshire and	
50% in Target, the expected return is: $E[R_p] = w_{BRK}E[R_{BRK}] + w_{TGT}E[R_{TGT}]$	
= 0.5(0.05) + 0.5(0.06) = 0.055	
No.	
Copyr 5 26; Perse Econes	

Example 12.4 Reducing Risk Without Sacrificing Return Execute (cont'd): And the variance is: $Var(R_p) = w_{MR}^2 SD(R_{MK})^2 + w_{TOT}^2 SD(R_{TOT})^2$ $+2w_{_{BK}}w_{_{FOT}}Corr(R_{_{BK}},R_{_{FOT}})SD(R_{_{BK}})SD(R_{_{TOT}})$ = $(0.50)^2(0.20)^2 + (0.50)^2(0.31)^2 + 2(0.50)(0.50)(0.37)(0.20)(0.31)$ = 0.0455 • The standard deviation in this case is: $SD(R_{\star}) = \sqrt{Var(R_{\star})} = \sqrt{0.0455} = 0.2133, \text{ or } 21.33\%$ **Example 12.4a Reducing Risk** Without Sacrificing Return Problem: Based on historical data, your expected annual return for Microsoft is 6% and for Starbucks is 8%. What is the expected return and risk (standard deviation) of your portfolio if you only hold Microsoft? If you split your money evenly between Microsoft and Starbucks, what is the expected return and risk of your portfolio? Example 12.4a Reducing Risk Without Sacrificing Return Solution: Plan: A. From Table 12.3 we can get the standard deviations of Microsoft and Starbuck's stock along with their correlation: $SD(R_{MSFT})=0.28$, $SD(R_{SBUX})=0.39$, $Corr(R_{MSFT},R_{SBUX})=0.36$ B. With this information and the information from the problem, we can compute the expected return of the portfolio using Eq. 12.3 and its variance using Eq. 12.4


Example 12.4a Reducing Risk	
Without Sacrificing Return	
Without Sacrificing Return	
Execute:	
For the all-Microsoft portfolio, we have 100% of	
our money in Microsoft stock, so the expected	
return and standard deviation of our portfolio is	
simply the expected return and standard deviation of that stock:	
$E[R_{MSFT}] = 0.06, SD(R_{MSFT}) = 0.28$	
L[KMSFT] = 0.00, 3D(KMSFT) = 0.20	
Copyright © 2012 Plannan Education.	
	<u> </u>
Example 12.4a Reducing Risk	
Without Sacrificing Return	<u> </u>
Without Sacrificing Return	
Execute (cont'd):	
However, when we invest our money 50% in Microsoft and	
50% in Starbucks, the expected return is:	
$E[R_p] = w_{MSFT}E[R_{MSFT}] + w_{SBUX}E[R_{MSFT}]$	
= 0.5(0.06) + 0.5(0.08) = 0.07	
2807,200,00	wanter the second secon
Copyright C 2012 Pearwell Education	
Example 12.4a Reducing Risk	
Without Sacrificing Return	
Execute (cont'd):	
And the variance is:	
$Var(R_p) = w_{scorr}^* SD(R_{scorr})^2 + w_{SMN}^* SD(R_{scorr})^2 $ $+ 2w_{scorr}^* w_{ssorr}^* Corr(R_{scorr}, R_{scorr})^* SD(R_{scorr}) SD(R_{scorr})$	
$= (0.50)^{3}(0.28)^{2} + (0.50)^{2}(0.39)^{2} + 2(0.50)(0.50)(0.36)(0.28)(0.39)$	
= 0.07728	

• The standard deviation in this case is:

 $SD(R_s) - \sqrt{Var(R_s)} = \sqrt{0.07728} = 0.278, \text{or } 27.8\%$

- The Volatility of a Large Portfolio
 - Volatility declines as the number of stocks in the equally weighted portfolio grows.
 - Most dramatic initially -going from 1 to 2 stocks reduces risk much more than going from 100 to 101
 - Even for a very large portfolio systematic risk remains.

12.3 Measuring Systematic Risk

- Our goal is to understand the impact of risk on the firm's investors so we can:
 - quantify the relation between risk and required return
 - produce a discount rate for present value calculations.
- To recap:

 - The amount of a stock's risk that is diversified away depends on the portfolio that you put it in.

 With a large enough portfolio, you can diversify away all unsystematic risk, but you will be left with systematic risk.

12.3 Measuring Systematic Risk

- Role of the Market Portfolio
 - The sum of all investors' portfolios must equal the portfolio of all risky securities in the market.
 - The market portfolio is the portfolio of all risky investments, held in proportion to their value.
 - Thus, the market portfolio contains more of the largest companies and less of the smallest companies.

Consider C 2012 Page of Education

12.3 Measuring Systematic Risk

 Imagine that there are only two companies in the stock market, each with 1000 shares outstanding:

Number of Shares Outstanding	Price Per Share	Market Capitalization
1,000	\$40	\$40,000
1,000	\$10	\$10,000
	Outstanding 1,000	Outstanding Price Per Share 1,000 \$40

Copyright G 3817 Promon Countries

12.3 Measuring Systematic Risk

- Aggregate market portfolio is 1000 shares of each, with:
 - 80% (\$40,000/\$50,000) in A
 - 20% (\$10,000/\$50,000) in B.
- Everyone wants to hold the market portfolio and the sum of everyone's portfolios must be the market portfolio.

Cappings © 2013 Februar Educati

12.3 Measuring Systematic Risk • The only way for this to be true is for everyone to put 80% of their money in A and 20% of their money in B. • Since stocks are held in proportion to their market capitalization (value), we say that the portfolio is value-weighted. 12.3 Measuring Systematic Risk • The investment in each security is proportional to its market capitalization, which is the total market value of its outstanding shares: Market Value of a Firm = (Number of Shares Outstanding)×(Price per share) (Eq. 12.5) 12.3 Measuring Systematic Risk • Stock Market Indexes as the Market Portfolio In practice we use a market proxy—a portfolio whose return should track the underlying, unobservable market portfolio. • The most common proxy portfolios are market A market index reports the value of a particular portfolio. Dow Jones Industrial Average 5&P 500

12.3 Measuring Systematic Risk

- Market Risk and Beta
 - We compare a stock's historical returns to the market's historical returns to determine a stock's beta (β)
 - The sensitivity of an investment to fluctuations in the market portfolio.
 - Use excess returns security return less the risk-free rate
 - The percentage change in the stock's return that we expect for each 1% change in the market's return

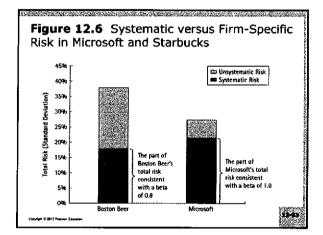
County C 2017 Paymon Educate

12-0

12.3 Measuring Systematic Risk

- Market Risk and Beta
 - There are many data sources that provide estimates of beta
 - Most use 2 to 5 years of weekly or monthly returns
 - Most use the S&P 500 as the market portfolio.

Copyright © 2012 Passess Education


and the	2.4 Average Betas for Stocks by Industry Betas of a Selected Company in Each Industry
	Manage Tana Congress Manage Ma
	there is the same of the same
	Harmon U. C. C. Company C.
	Stronger Community 63 KG The Dear-Cale Columny 63
	Marchana Gr. 1775 Production Gr.
	Conseque (Martinité 12 CM 12 C
	Reind glamme Improvementig 40 AG 200mm Depict latt. 0.7
	Proceeding Products 10 HDS Paris Companies 22
	Admit Dest Managaria (a) F Food Mater Company 2.5
	Fernitry & Washing Traffic 18 WY Wagestations Conjugary 18
	Constant Services 1.1 9000 Graph 1.1
	Confession 14 OE Grand David Consumy 14
	Bookstation 1.5 BTC and Conjuntion 1.1

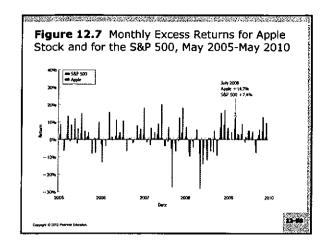
12.3 Measuring Systematic Risk

- The beta of the overall market portfolio is 1.
- Many industries and companies have betas higher/lower than 1.
 - Differences in betas by industry are related to the sensitivity of each industry's profits to the general health of the economy.

Capyright © 2012 Pastron Education

12-62

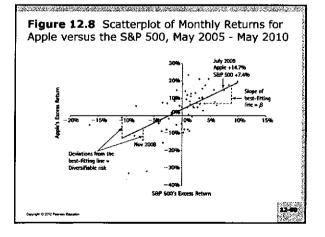
Example 12.5 Total Risk Versus Systematic Risk


Problem:

 Suppose that in the coming year, you expect SysCo's stock to have a standard deviation of 30% and a beta of 1.2, and UniCo's stock to have a standard deviation of 41% and a beta of 0.6.

- · Which stock carries more total risk?
- Which has more systematic risk?

opyright C 3912 Premium Educate


Example 12.5 Total Risk Versus Systematic Risk Solution: Plan: SvsCo 30% 1.2 UniCo 41% 0.6 12.3 Measuring Systematic Risk • Estimating Beta from Historical Returns - Beta is the expected percentage change in the excess return of the security for a 1% change in the excess return of the market portfolio. • The amount by which risks that affect the overall market are amplified or dampened in a given stock or investment. 12.3 Measuring Systematic Risk • Estimating Beta from Historical Returns - Apple's stock for example (Figure 12.7): The overall tendency is for Apple to have a high return when the market is up and a low return when the market is down. Apple tends to move in the same direction as the market, but its movements are larger. • The pattern suggests that Apple's beta is greater than

12.3 Measuring Systematic Risk

- In practice, we use linear regression to estimate the relation.
 - The output is the best-fitting line that represents the historical relation between the stock and the market.
 - The slope of this line is our estimate of beta.
 - Tells us how much the stock's excess return changed for a 1% change in the market's excess return.

Coopings C X 12 Pourson Education

 •		-

- One of our goals in this chapter is to compute the cost of equity capital
 - The best available expected return offered in the market on a similar investment.
- To compute the cost of equity capital, we need to know the relation between the stock's risk and its expected return.

Capyright & 2012 Pressure Education.

12.4 Putting It All Together: The Capital Asset Pricing Model

- The CAPM Equation Relating Risk to Expected Return
 - Only systematic risk determines expected returns
 - Firm-specific risk is diversifiable and does not warrant extra return.

Copyright © 2012 Passess Educates

12.4 Putting It All Together: The Capital Asset Pricing Model

- The CAPM Equation Relating Risk to Expected Return
 - The expected return on any investment comes from:
 - A risk-free rate of return to compensate for inflation and the time value of money, even with no risk of losing money.
 - A risk premium that varies with the systematic risk
 - Expected Return = Risk-free rate + Risk
 Premium for Systematic Risk

- The Capital Asset Pricing Model (CAPM)
 - The equation for the expected return of an investment:

$$E[R_i] = r_f + \beta_i \left(E[R_{Min}] - r_f \right)$$
Risk Premium for Security i (Eq. 12.6)

Copyddia G 3917 Pearlon Education

12.4 Putting It All Together: The Capital Asset Pricing Model

 The CAPM says that the expected return on any investment is equal to the risk-free rate of return plus a risk premium proportional to the amount of systematic risk in the investment.

- The risk premium is equal to the market risk premium times the amount of systematic risk present in the investment, measured by its beta (βi).
- We also call this return the investment's required return.

Conyright C 2012 Peerson Education

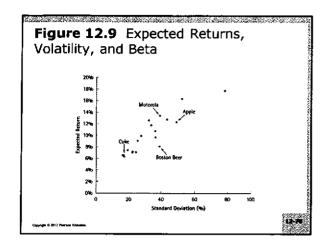
Example 12.6 Computing the Expected Return for a Stock

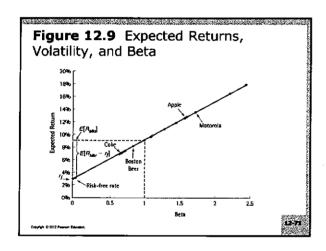
Problem:

 Suppose the risk-free return is 3% and you measure the market risk premium to be 6%. Apple has a beta of 1.6. According to the CAPM, what is its expected return?

Copyright © 2012 Paurage (identifi

Example 12.6 Computing the Expected Return for a Stock	EL-OSOI
Execute: • Using Eq. 12.6:	
$E[R_{AAPL}] = r_j + \beta_{ABPL} \left(E[R_{Me}] - r_j \right) = 3\% + 1.6 (6\%)$ = 12.6%	
는 그는 그 전에 한 시간 현실에 <mark>현실에 하다</mark> 면 하는 것이 되었다. 그 같은 것이 됩니다. 그 것이 되었다. 그 것이 되었다. 그 것이 됩니다. 그 같은 것이 됩니다. 그 것이 되었다. 그 것이 되었다면 되었다면 되었다면 되었다. 그 것이 되었다면 되었다면 되었다면 되었다면 되었다면 되었다면 되었다면 되었다면	
Copyright C 3913 Promote Education	6-51


- The Security Market Line
 - The CAPM implies a linear relation between a stock's beta and its expected return.
 - This line is graphed in Figure 12.9(b) as the line through the risk-ffee investment (with a beta of zero) and the market (with a beta of one); it is called the security market line (SML).


Copyright © 2012 Features Education

12.4 Putting It All Together: The Capital Asset Pricing Model

- The Security Market Line
 - Recall that there is no clear relation between a stock's standard deviation (volatility) and its expected return
 - The relation between risk and return for individual securities is only evident when we measure market risk rather than total risk,

apyright © 2012 Paurier Educate

Example 12.7 A Negative Beta Stock
Problem: • Suppose the stock of Bankruptcy Auction Services, Inc. (BAS) has a negative beta of -0.30. How does its expected return compare to the risk-free rate, according to the CAPM? Does your result make sense?
Cranger C 381 Pressul Gaussian

Example 12.7 A Negative Beta Stock Execute: Because the expected return of the market is higher than the risk-free rate, Eq. 12.6 implies that the expected return of Bankruptcy Auction Services (BAS) will be below the risk-free rate. As long as the market risk premium is positive (as long as people demand a higher return for investing in the market than for a risk-free investment), then the second term in Eq. 12.6 will have to be negative if the beta is negative. **Example 12.7 A Negative Beta Stock** Execute (cont'd): . For example, if the risk-free rate is 4% and the market risk - E[RBAS] = 4% - 0.30(6%) = 2.2%.- (See Figure 12.9: the SML drops below rf for $\beta < 0$.) 12.4 Putting It All Together: The **Capital Asset Pricing Model** • The CAPM and Portfolios - We can apply the SML to portfolios as well as individual securities. The market portfolio is on the SML, and according to the CAPM, other portfolios (such as mutual funds) are also on the SML.

• Therefore, the expected return of a portfolio should

• The beta of a portfolio made up of securities each

 $\beta_p = w_1 \beta_1 + w_2 \beta_2 + ... + w_n \beta_n$ (Eq. 12.7)

correspond to the portfolio's beta.

with weight w, is:

Example 12.8a The Expected Return of a Portfolio Problem: Suppose Ford (F) has a beta of 2.67, whereas the beta of Safeway (SWY) is 0.72. If the risk free interest rate is 3% and the market risk premium is 6%, what is the expected return of an equally weighted portfolio of Ford and Safeway, according to the CAPM? ge D 2012 France Education **Example 12.8a The Expected Return** of a Portfolio Execute: · Using the first approach, we compute the expected return for F and SWY: $\mathsf{E}[\mathsf{R}_{\mathsf{F}}] = \mathsf{r}_{\mathsf{f}} + \beta_{\mathsf{F}}(\mathsf{E}[\mathsf{R}_{\mathsf{Mkt}}] - \mathsf{r}_{\mathsf{f}}) \quad \mathsf{E}[\mathsf{R}_{\mathsf{SWY}}] = \mathsf{r}_{\mathsf{f}} + \beta_{\mathsf{SWY}}(\mathsf{E}[\mathsf{R}_{\mathsf{Mkt}}] - \mathsf{r}_{\mathsf{f}})$ $E[R_f] = 3\% + 2.67(6\%) = 19.02\%$ $E[R_{SWY}] = 3\% + 0.72(6\%) = 7.32\%$ Then the expected return of the equally weighted portfolio P is: $E[R_p] = 0.5(19.02\%) + 0.5(7.32\%) = 13.17\%$ 19.77 **Example 12.8a The Expected Return** of a Portfolio

Execute (cont'd):

 Alternatively, we can compute the beta of the portfolio using Eq. 12.7;

$$\beta_P = w_F \beta_F + w_{SWY} \beta_{SWY}$$

$$\beta_P = (0.5)(2.67) + (0.5)(0.72) = 1.695$$

 We can then find the portfolio's expected return from the CAPM:

$$E[R_p] = r_f + \beta_p(E[R_{Mkt}] - r_f)$$

 $E[R_p] = 3\% + 1.695(6\%) = 13.17\%$

Copyright C 2012 Payroun Education

- Summary of the Capital Asset Pricing Model
 - Investors require a risk premium proportional to the amount of systematic risk they are bearing.
 - We can measure systematic risk using beta (β)
 - The most common way to estimate beta is to use linear regression – the slope of the line is the stock's beta.

Constitute E Thirt Bancon Education

12.4 Putting It All Together: The Capital Asset Pricing Model

- Summary of the Capital Asset Pricing Model
 - The CAPM says we can compute the expected (required) return of any investment using the following equation:

 $\mathsf{E}[\mathsf{R}_i] = \mathsf{r}_\mathsf{f} + \ \beta_i(\mathsf{E}[\mathsf{R}_\mathsf{Mkt}] - \mathsf{r}_\mathsf{f})$

which, when graphed is called the security market line.

Copyright G 2012 Personn Education

Chapter Quiz

How is the expected return of a portfolio related to the expected returns of the stocks in the portfolio?

- 2. What determines how much risk will be eliminated by combining stocks in a portfolio?
- 3. What is the market portfolio?
- 4. What does beta tell us?
- 5. What does the CAPM say about the required return of a security?
- 6. What is the Security Market Line?

Lanua Education