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' 1 1 Strategies for Analyzing
1 Quantifative Data”

Numbers are. meaning!eés urless we a'ndfyz_e and in_tes_-'pr'et them in order to
reveal the truth that lies beneath them. With statistics, we ¢an summarize
large numerical data sets, moke pr.éj ctions about future ?reﬁc;!_s,'ond '
determine when different experimental
différe_ni autcomes. ?hus,:sfaﬁ'
powerful tools in the e
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In quantitative research, we try to make better sense of the wotl
obtain. Sometimes these numbers represent aspects of the observabl
pull of gravity on a concrete object, the temperature of a gas, or th

in a particular activity. We may also use numbers to represent nonphysical phenomena, such as -
how much students learn in the classtoom, what beliefs people have about controversial topics, -
or how much influence various news media are perceived to have. We can then sumrmnarize and .
interpret the numbers by using statistics. In general, we can think of SLatistics as a group of
computational procedures that enable us to find patteras and meaning in numerical daga, E
' To some beginning researchers, the field of statistics can appear to be a never-never land in 1
which advanced mathemaricians conjure up elusive, hard-to-grasp numerical entiries. But in -
reality, statistics are invaluable and often indispensable tools in research. They provide a means 2%
through which numerical data can be made more meaningful, so that the researcher can see their
nature and better underscand their interrelationships. The first and last question of staristics is
precisely the same question that every researcher needs to ask: What do the data mean? In other
words, What message do they communicate?

d through the numbers we.
e, physical world, such as the
e number of people engaging

Exploring and Organizing a Data Set

Before employing any seatistical procedure—before making a single computation—Iook closely

at your dara and explore various ways of organizing them. Using an open mind and your
imagination, look for patterns in the numbers. Nothing takes the place of looking carefully,
inquiringly, critically—perhaps even naively—at the data.

We take a simple example ro illustrate the point. Foliowing are the scores on a reading
achievement test for 11 children: Ruth, 96; Robert, 60; Chuck, 68; Margaret, 88: Torm, 56;

Mary, 92; Ralph, 64; Bill, 72; Alice, 80; Adam, 76; Kathy, 84. What do you see? Jot down a few
observations before you read further.

Now let’s try various arrangements of the scores to see whar patteras they might reveal. Some
of the information may be jrre

levant to our research problem. No mater. Careful tesearchers dis-
cover everything possible about their dara, whether che information is immediately useful or nor.
We begin by forming an alphabetical list of the children’s names and their rest scores:

Adam 76 Mary 92
Alice 80 Ralph 64
Bill 72 Robert 60
Chuck 68 Rurh 96
Kathy 84 Tom 56

Margaret 88
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Adam Alice Bilt Chuck Kathy Ralph Robert Ruth

When we display the children’s test scores in this manner, the scores are no more meaningful,
but we have at least isolared individuals and scores so that we can inspect them more easily. Does
this arrangement show us anything? Yes. It shows that the highest score was earned by a girl and
that the lowest score was earned by a boy. Silly, you say, and meaningless. Perhaps. Bur it’s an
observable fact, and it might come in handy larer on.

Let’s keep the arrangement but view ir in another way. In Figure 11.1, we see these 11 boys
and girls lined up in a row, still arranged in alphabetical order according to first names. Look!
Now we can discern a symmetrical pattern that wasn't previously apparent. No matter whether
we start from the left or from the right, we have one boy, then om girl, then fwo boys, three girls,
two boys, one girl, and one boy. Putting adjacent children of the same sex together, the arrange-

ment is this:
I FI PRI RS

1 1 2 3 2 1 1

or.

Now ler’s arrange che data differently, sepatating girls from boys:

Girls Boyr
Alice 80 Adam 76
Kathy 84 Bill 72
Margaret 88 Chuck 68
Mary 92 Raiph 64
Ruth 96 Robert 60
Tom 56

Represented graphically in Figure 11.2, che trends are quite dramatic: The girls’ scores increase
as we proceed through the alphabet, and the boys' scores decrease.

Nort only ate there opposite trends, but now we are aware of a very obvious fact that may, up
to this point, have escaped our attention: The scores are equidistant from one another. Each score
is 4 points eicher above or below the preceding one.

Whatever we have observed may have no relevance whatsoever for our project, but because
it represents dynamics within the data, it is important that we see it. That is the point: The
researcher should be aware of the dynamics—the phenomena—thar are active within the data,
whether those phenomena are imporcant to che purpose of the research or not. The astute
researcher overlooks nothing.
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FIGURE 11.2
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The preceding exercise was, of course, an artificial one. We would be hard pressed ro find
much meaning in diverging trends for girls versus boys that appear simply through an
alphabecical arrangement of first names. Yet for the researcher working in an area of science,
observations of a similar kind may reveal important new knowledge. Take the case of a paleon-
tologist and an asttonomer who examined growth marks on the spiral-shaped shells of a particu-
lar marine mollusk, che chambered naurilus (Kahn & Pompea, 1978). They noticed that each
chamber in a shel! had an average of 30 growth lines and deduced rhar (a) the growth lines had
appeared at the rate of 1 per day and (b) one chamber had been laid down every lunar month,
specifically every 29.53 days. They also concluded that, if their interpretation of the data was
correct, it might be possible to determine from fossil shells the length of che ancient lunar
months. Because the distance of the moon from Earth can be calculared from the length of the
lunar month, the scientists examined nautilus fossils—some of them 420 million years old—
and noticed a gradual decrease in the number of growth lines in each chamber as the fossils came
from further and further back in prehistoric time. This finding indicaced thar the moon was
once closer to Earth and revolved around it more rapidly than it dees now—an obsetvation con-
sistent with generally accepted scientific theory.

In the two examples just presented, we find a fundamental principle about data exploration:
How the researcher prepares the data for inspection or interpretation will affect the meaning that those data
reveal. Therefore, every researcher should be able to provide a clear, logical raticnale for the procedure used to
arrange and organize the data. We had no rationale whatsoever for arranging the dara according to
the children’s first names. Had we used their lasc names—which would have been equally
illogical—we would still have seen that the girls had higher scores than the boys, buc we would
not necessarily have seen the diverging trends depicted in Figure 11.2.

In research questions regarding the physical world, the method for organizing data is ape to
be faitly straightforward. Dara often come to the scientist prepackaged and prearranged. The
sequence of growth rings on a nautilus shell is already there, obvious and nondebarable. Bur in
other disciplines—for instance, in the social sciences, humanities, and education—a researcher
may need to give considerable thoughe to the issue of how best to organize the data,

Organizing Data to Make Them Easier to Think about and Inferpret

As we mentioned in Chapter 1, the human mind can think about enly so much information at
one time. A dara ser of, say, 5,000 tidbits of information is well beyond a human being’s mental
capacity to consider simuleanecusly. In fact, unless the researcher has obtained very few pieces of
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data (perhaps only seven or eight numbers), he or she will want to crganize them in one or more
ways to make them easier to inspect and think about.

In the preceding example of 11 children and their reading achievement test scotes, we
experimented with several simple organizational schemes in an effort to find patterns in the data.
Let's take another everyday example. Joe is in high school. In February he gets the following quiz
grades: 92, 69, 91, 70, 90, 89, 72, 87, 73, 86, 85, 75, 84, 76, 83, 83, 77, 81, 78, 79. Here Joe's
grades are listed in a simple linear sequence—the order in which Joe earned them. These are the raw
numerical facts—the data-—derived directly from the situation. As they appear in the preceding
list, they don't say very much, except chac Joe's performance seems to be inconsistent.

Let’s put Joe’s grades in a two-dimensional table organized by weeks and days:

Grade Record for February
Monday Tuesday Wednesday Thursday Friday
First week 92 69 91 70 90
Second week 89 72 87 73 86
Third week 85 75 84 76 83
Fourth week 83 77 81 78 79

The table reveals some patterns in Joe's grades. If we compare the five columns, we quickly
notice that the grades on Mondays, Wednesdays, and Fridays are considerably higher chan those
on Tuesdays and Thursdays. And if we look ac successive numbers in each column, we see that
the grades get progressively worse on Mondays, Wednesdays, and Fridays, but progressively bet-
ter on Tuesdays and Thursdays.

Now let's represent Joe's grades in the form of a simple /ine graph, shown in Figure 11.3. In
this graph, we see phenomena that were not readily apparent in the two-dimensional table. It's
hard to miss the considerable variability in grades during the first and second weeks, followed
by a gradual leveling-out process in the latter part of the month. A profile of this sort should
prompt the alert researcher to explore the data further in an attempt to explain the patrern the
graph reveals.

(Graphing data is often quite useful for revealing patterns in a data set. For example, let’s
return to a study first described in a Practical Application exercise neat the end of Chapter 9:
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“I'wo researchers want to see if a particular training program is effective in teaching horses
to enter a horse trailer wichour misbehaving in the process—thart is, withoue rearing, try-
ing to turn around, or in some other way resisting entry into the trailer. Five horses (Red,
Penny, Shadow, Sammy, and Fancy) go through the training, with each horse beginning
training on a different day. For each horse, an observer counts the number of misbehav-
iors every day prior to and during training, with data being collected for a time span of at
least 45 days. (Ferguson & Rosales-Ruiz, 2001)

In Chapter 9 we were concerned only with che design of this study, concluding that it was a
quasi-experimental (and more specifically, a multiple baseline) study. But now let’s look at the
results of the study. When the researchers plotted the numbers of five different misbehaviors for
each horse before and during training, they constructed the graph presented in Figure 11.4, Was
the training effective? Absolutely yes! Once training began, Penny had one really bad day plus
another day in which she turned a couple of times, and Shadow and Fancy each tossed their
heads during one of cheir loading sessions. Aside from these four occasions, the horses behaved
perfectly chroughout the lengthy training period, despite the fact that all five had been quite
otnery prior to training. These data have what we mighe call a hir-you-between-the-eyes quality:
We don't need a fancy stacistical analysis to tell us that the training was effective.

Time-series scudies often yield data thar show clear hit-you-between-the-eyes patterns; for
another example, return to Figure 9.3 on page 241. But generally speaking, simply otganizing
the data in various ways will not, in and of itself, reveal everything the data have co offer. Instead,
a quantitative researcher will need to perform statistical analyses to fully discover the patterns
and meanings che data hold. Before we turn co the nature of statistics, however, let’s briefly look
at how a researcher can use computer software to assist with the data organization process.

Using Computer Spreadsheets to Organize and Analyze Data

%, The process of organizing large amounts of data was once a cambersome, time-consuming, and
uswwe  tedious task. Fortunately, the advent of computers has made the process much simpler and more
TECHNOLDBY  .fficient. One important tool is an electronic spreadsheet, a software program that allows a
researcher to enter and then manipulate dara in a two-dimensional table. Undoubtedly the best
known spreadsheet software is Microsoft's Excel, but other software packages are available as
well, including “freeware” you can download without charge from the Internet (e.g., Sphygmic
Software Spreadsheet, Simple Spreadsheet, Spread32).

The beauty of electronic spreadsheets is that once you enter data into them, the sofrware can
quickly and easily help you organize the data and make simple calculations. For example, you
can add several test scores together co create a new column that you might call “Total of Test
Scores,” or you might divide the numbers in one column by the numbers in another column to
get proportions that are potentially meaningful in the contexc of your study. If you change a data
point—for example, perhaps you discover that you miskeyed a test score and so must cortect
it—all of the relevant calculacions are automatically updated. The software typically also lets
you copy (or import) data from databases, word processing documents, or other spreadsheets into
a new spreadsheet.

Spreadsheets would be useful to researchers even if they were capable only of listing dara
and adding up different columns and rows. But in fact, they allow the researcher to do many
other things as well:

-
=t

£ Sorting. Once the data have been organized into rows and columns, it is possible o
reprganize them in any way you wish. For example, suppose you have math test scores for
a large number of children of various ages. You originally entered the scores in the order
in which you obeained them. But now you decide that you want to consider them on the
basis of che children’s ages. Ia a macter of seconds, an electronic spreadsheet can sort the
scores by age and list them from youngest to oldest child, or vice versa.

B Recoding. A spreadsheet typically allows you to make a new column that reflects a
transformation of data in an existing column. For instance, imagine that you have
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reading scores for children from ages 7 to 15. Pethaps you want to compare the scores for
children in three different age groups: Group 1 will consist of children who are 7 to 9
years old, Group 2 will include 10- to 12-year-olds, and Group 3 will include 13- o
15-year-olds. You can tell che computer to form a new column called “Group” and to
give each child a group number (1, 2, or 3) depending on the child’s age. )

Formulas. Current spreadsheet programs have the capability to calculate many complex
mathematical and statistical formulas. Once the dara are organized into rows and
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columns, you can specify formulas cthar describe and analyze one or more groups of data.
For example, you can enter the formula for computing the average, or mean, of a set of
numbers, and the spreadsheer will perform the necessary calculacions. Many commonly
used formulas are often preprogrammed, so you merely selece the statistic or function
you need (e.g., you might select “AVERAGE") and highlight the data you wish to

include in the calculation. The sofrware does che rest. g

B Graphing. Most spreadsheet programs have graphing capabilities. After you highlight
the approptiate parts of the data, the program will automatically produce a graph from
those dara. Generally, the type of graph produced is selected from several options (e.g.,
line graphs, bar graphs, pie charts). Users can select how the axes are labeled, how the °
legend is created, and how the dara points are depiceed.

B “Whas Ifr.” Thanks to the speed and ease with which an electronic spreadsheer can
manipulate and perform calculations on large bodies of data, you can engage in numer-
ous trial-and-error explorations. For example, if you ate examining data for a sample of
5,000 people and decide thac an additional comparison becween cerrain subgroups
might prove interesting, the spreadsheet can complete the comparison in a matter of
seconds. This capability allows you to concinually ask what if . . . ?>—for instance, Wha
if the data wete analyzed on the basis of gender, rather than on the basis of age? or Wha
if resules from administering only one level of a specitic medication were analyze
instead of grouping all levels together? This what-if capability allows the researcher «
explore the data in many possible ways quickly and easily.

In the discussion of Microsoft Excel in Appendix A, you can learn how to use some of the man
features that an electronic spreadsheet offers.

We have said enough abourt organizing a data set. We now turn to one of the most impo
tant tools in a researcher’s toolbox—statistical analysis. ‘

Choosing Appropriate Statistics

Tn a single chapter we cannot thoroughly describe the wide vatiety of statistical procedures av:
able to researchets. Here we must limit ourselves to a description of basic statiscical concepts
principles and a brief overview of some of the most commonly used procedures. We are assurni
that you have taken or will take at least one course in statistics—becter still, take two, three
even more'—to get a firm foundation in this essential research rool.

In a preceding section, we looked at Joe's test scores in three ways: a simple linear seque
a two-dimensional table, and 2 line graph. All of these depicted Joes day-to-day perform
Now, instead, let's begin to summarize what we are seeing in the test scores. We can, for examp
use a statistic known as a mean—-in everyday terms, an average—to take out the jagged irregu
ties of Joe's daily performance. In Figure 11.5, we represent Joe's average scores for the four w
of February with four broken lines. When we do this, we get an entirely new view of Joe's achi
ment. Whereas Figure 11.3 showed only an erratic zigzagging between daily excremes, witht
zigzags becoming less extreme as the weeks went by, che dotted lines in Figure 11.5 show
week by week, very little change actually occurred in Joe's average test performance.

Yet it may be that we also want to summarize how much Joe's grades vary each wee
means presented in Figure 11.5 tell us nothing about how consistent or inconsistent Joes
are in any given week. We would need a different scatistic—perhaps a range or a st
deviation—ro summarize the variability we.see each week. (We'll describe the nature o
measures of variability shortly.)

Thus far, we have discovered an important poinc: Looking at data in only one way ¥,
incomplete view of thase data and thus provides only a portion of the meaning those data hold.
reason, we have many statistical techniques, each of which is suitable for a different pi
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Fach technique extracts a somewhat different meaning from a particular set of data. Every time
you apply a new statistical treatrment to your data, you derive new insights and see more clearly
and completely the dara’s underlying dynamics.

In the next few pages, we consider two general functions that statistics can serve. We also
discuss the various ways in which the nature of the data may dicrate the particular statistical
procedures that can be used.

Functions of Statistics

Statistics have rwo major funcrions. Some statistics describe what the data look like—where
their center or midpoint is, how broadly they are spread, how closely two or more variables
within the data are intercorrelated, and so on. Such statistics are, appropriately, called descrip-
tive statistics. .

Other statistics, known as inferential scatistics, serve a different purpose: They allow us to
draw inferencer about large populations by collecting data on relatively small samples. For exam-
ple, imagine that you are an immigration officer. Although you have never been to Egypt, you
have met numerous Egyptians as they debark from incoming planes and ships. Perhaps vou have
even become well acquainted with a small number of Egyptians. From this small sample of the
Egyptian population, you mighe infer what Egyptian people in general are like. (Your inferences
may or may not be accurate because your sample, which consists entirely of visitors and immi-
grants to your own country, is not necessarily representative of the entire population of Egypt.
However, that is a sampling problem, not a statistical one.}

More generally, inferencial statistics involve using a small sample of a population and then
estimaiing the characteristics of the larger population from which the sample has been drawn. For
instance, we might estimate a population mean from the mean we obrain for a sample. Or we
might determine whether two or more groups of people are actually different, given che differ-
ences we observe between samples taken from each of those groups. Inferential statistics provide
a way of helping us make reasonable guesses about a large, unknown population by examining a
small sample that is known. In the process, they also allow us to test hypotheses regarding what
is true for chat large population.
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Statistics as Estimates of Population Parameters

Especially when we use statistics to draw inferences abour a population from which a research
sample has been drawn, we are using themn as estimates of population parameters. A parameter is a
characteristic or quality of a population that, in comceps, is 2 constant; however, its value is variable.

As an illustration, let’s consider a circle. One of the parameters of a circle is its radius. In
concept, the radius is a constant: It is the same for every circle—rthe distance from the center of
the circle to the perimeter. In value, it vaties, depending on the size of the circle. Large circles
have long radii; small circles, short radii. The value—that is, the length of the radius in linear
units (centimeters, feet, etc.)}—is variable. Thinking of a parameter in this way, we see that each
circle has several parameters: The diameter is always twice the radius (7}, the circumference is
always 2n7, and the area is always nr2. These concepts are constants, even though their particular
values vary from one circle ro the next.

Within the context of of quanritative data analysis, a parameter is a particular characteristic
(e.g., a mean or standard deviation) of the entire population—which is sometimes called a
universe—about which we want to draw conclusions. In most cases, we can study only a small
sample of a population. Any calculation we perform for the sample rather than the populacion
(the sample mean, the sample standard deviation, etc.) is called a statistic. Seatiscicians distin-
guish berween population parameters and sample stacistics by using different symbols for each.
Table 11.1 presents a few commonly used symbols in statistical notation.

Considering the Nature of the Data

LTABLE 11.1

Conventional statistical

notation for population
parameters and sample
statistics

As you begin to think about the statistical procedures thar might be most approptiate for your
research problem, keep in mind that different statistics are suitable for different kinds of data. In

particular, you should consider whether your data

# Have been collected for 2 single group or, instead, for two or more groups
8 Involve conrinuous or discrete variables

# Represent nominal, ordinal, interval, or ratio scales

& Reflect a normal or non-normal distribution

After we look at each of these distincrions, we will relate them to another distincrion—chat
between parametric and nonparametric statistics.

Single-Group versus Multi-Group Data

In some cases, a research project yields data about a single group of people, objecrs, or events. In
other cases, it may yield parallel sets of data about two or more groups. Analyzing characteristics
of a single group will often require different statistical techniques than those for making com-
parisons among two of more groups.

The Factor in Question Population Parameter Sample Statistic

The mean u Morx
The standard deviation o sor SD
Proportion or probability P P
Number or total N n

Note: The symbel 1 is the loweicase form of the Greek letter mu. The symbol o is the lowercase form of the
Greek letfer sigma
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Continuous versus Discrete Variables

In Chapter 2 we define a variable as a quality or characteristic in a reseacch investigation thac has
two or more possible values. Simply put, a variable varies. However, it may vary in different
ways. A continuous variable reflects an infinite number of possible values falling along a par-
ticular continuum. A simple example is chronological age. The participants in a research study
can be an infinite number of possible ages. Some might be 2 years old, others might be 92, and
we might have virtually any age (including fractions of years) in between. Even if che study is
limited to a small age range—say, 2- to 4-year-old children—we might have children who are
exacely 2 years old, children who ate 2 years and 1 month old, children who are 2 years and
2 months old, and so on. We could, in theory, be even more precise, perhaps specifying partici-
pants’ ages in days, hours, minutes, seconds, or even fracrions of a second.

In contrast, a discrete variable has a finite and small number of possible values. A simple
example is a student’s high school grade level. At a four-year high school, a student can be in
only one of four grades: 9th, 10th, 11th, or 12th. At most high schools, it isn’t pessible to be in
anything else. One cannot be somewhere between two grade levels, such as in the “9.25th grade.”

Nominal, Ordinal, Interval, and Ratio Daia

In Chapter 4 we describe four different scales of measurement; these scales, in tura, dictate how
we can statistically analyze the numbers we obtain relative to one another. To refresh your mem-
ory, we briefly describe each of the scales again.

& Nominal data are those for which numbers are used only to identify different categories of peo-
ple, objects, or other entities; they do not reflect a particular quantity or degree of something.
For instance, a researcher might code all males in a data set as 1 and all females as 2. The
researcher mighr also code political affiliation with numbers, pethaps using 1 for Republicans,
2 for Democrats, 3 for Independents, and so on. In neither case do the numbers indicate that
participants have more or less of something; girls don’t have more “sex” than boys, and
Independents don't have more “political affiliation” than Republicans or Democrats.

¥ Ordinal data are those for which che assigned numbers reflect an order or sequence. They
tell us the degree to which people, objects, or other eatities have a cerrain quality or char-
acteristic {a variable} of interest. They do not, however, tell us anything about how great
the differences are berween the people, objects, or other entities. For example, in a group
of graduating high school seniors, each student might have a class rank rhar refleces his or
her relative academic standing in the group: A class rank of 1 indicates the highest grade
point average (GPA), a rank of 2 indicates the second highest GPA, and so on. These num-
bers tell us which scudents surpassed others in terms of GPA, buc it does not cell us pre-
cisely how similar or different che GPAs of any two students in the sequence are.

8 Interval data reflect equal units of measurement. As is true for ordinal data, the num-
bers reflect differences in degree or amount. But in addition, differences between the
numbers tell us how much difference exists in the characteristic being measured. As an
example, scores on intelligence tests (IQ scores) are, because of the way in which they
are derived, assumed to reflect an interval scale. Thus, if we rake four IQ scores at equal
intervals—-for instance, 85, 95, 103, and 115—we can assume that the 10-poinr differ-
ence between each pair reflects equivalent differences in intelligence between the peo-
ple who have obtained those scores. The one limiration of interval data is that a value
of zero (0) does no necessarily reflect a complete lack of the characteristic being meas-
ured. For example, it is sometimes possible to get an IQ score of 0, but such a score
does not mean that a person has no intelligence whatsoever.

B Ratio data ate similar to interval data but have an additional feature: a true zero point. Not
only do the aumbers reflect equal intervals between values for the characteristic being
measured, but in addition a value of O tells us that chere is 2 complete absence of thar
characteristic. An example would be income level: People with an annual income of
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$30,000 make $10,000 more than people with an annual income of $20,000, and people
with an annual income of $40,000 make $10,000 more than people with an annual income
of $30,000. Furthermore, people who make $0 a year have o income.

Normal and Non-Normal Distributions

Numerous theorists have proposed that many characteristics of living populations (e.g., popula-
tions of maple trees, platypuses, human beings, or a certain subgroup of human beings) reflect a
particular patrern, one char looks like chis:

Many

Some

Frequency

None

Low Moderate High
Characteristic Being Measured

This partern, commonly called the normal distribution or normal curve—you may also see
the term bell curve—has several distinguishing characceristics:

B I is horizontally symmervical,  One side is the mirror image of the other.

B Irs highest point is at its midpoint. More people (or whatever other entities are the focus of
investigation) are located at the midpoint than at any other point along the curve. In
statistical terms, three widely used measures of central tendency—the mode, the median,
and the mean (all to be described shortly)—are equivalent.

B Predicrable percentages of the popuiation lie within any given portion of the curve.  If we divide
the curve according to its seandard deviation (also to be described shortly), we know that
certain percentages of the population lie wichin each portion. In parcicular, approxi-
mately 34.1% of the population lies berween the mean and one standard deviation below
the mean, and another 34.1% lies between the mean and one standard deviation above
the mean. Approximately 13.6% of the population lies between one and two standard
deviations below the mean, with another 13.6% lying between one and two standard
deviations above the mean. The remaining 4.6% lies two or more standard deviacions
away from the mean, with 2.3% at each end of the diseribation. This pattetn is shown in
Figure 11.6. The proportions of the population lying within any particular section of the
normal distribution can be found in most introductory statistics books. You can also find
them online by using the key words “normal distribution table” in a search engine such
as Google or Yahoo!

| FIGURE 11.6
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To better understand the normal distribution, take any forruitous happening and analyze its
distribution pattern. For example, lec’s take the corn production of Iowa farms during a single
year. If we could survey the per-acre yield of every farmer in Iowa—the total population, or uni-
verse, of the cornfields and corn farmers in Towa—we would probably find that a few farmers
had an unusuatly poor yield of corn per acre for no discernible reason except that “that’s the way
it happened.” A few ocher farmers, for an equally unknown reason, likely had unusually heavy
yields from cheir fields. However, most farmers would have had a middle-of-the-road yield, slop-
ing gradually in either direction toward the greater-yield or the lesser-yield direction. The nor-
mal curve would describe the Iowa corn production. No one planned it thar way; it is simply
how nature behaves.

Watch an approaching thunderstorm. An accasional flash of lightning heralds the coming
of the storm. Soon the flashes occur more frequently. At the height of the storm, the number of
flashes per minute reach a peak. Gradually, with the passing of the storm, che number of flashes
subsides. The normal curve is at work once again.

We could think of thousands of situations, only to find that nature often behaves in a way
consistent with the normal distribution. The curve is a constaat; it is always bell-shaped. In any
one situation, the zafuer within it vary. The mean is not always the same number, and the overall
shape may be more broadly spread or more compressed, depending on the situation,

Sometimes, however, a variable doesn’c fall in a normal distribution. For instance, its dis-
rriburion might be lopsided, or skewed. If the peak lies to the lefe of midpoint, the distribu-
tion is positively skewed; if the peak lies to the right of midpoint, the distribution is
negatively skewed. Or perhaps a distribution is unusually pointy or flat, such cthac the per-
centages within each portion of the distribution are notably different from those depicted in
Figure 11.6. Here we are talking about kurtosis, with an unusually peaked, or pointy, distri-
burion reflecting a leprokurtic curve and an unusually flat one being a platykurtic curve
(see Figure 11.7).

Of course, some data sets don't resemble a normal distribucion, not even a lopsided, pointy,
or overly flattened variation of one. In general, ordinal daca, by virtue of how they are created,
never fall in a normal distribution. For instance, a data set might ook more like a stairway thar
progresses upward in regular intervals. Or, take a graduating high school class. If each student is
given a class rank according to academic grade point average, Luis might rank first, Janene
might rank second, Marietta third, and so on. We don’t see a normal distribusion in this situa-
tion because we have only one student at each academic rank. If we conseract a graph that
depicts the frequencies of the class ranks, we see a low, flac distribution racher than one that rises
upward and peaks in the middle.

Percentile ranks, too, form a flat distribution rather chan a bell-shaped curve.
Percentile ranks are often used to report performance on scholastic aptitude and achieve-
ment tests. To calculare them, a researcher firse determines the raw score—the number of

Common departures from
the normal distribution

Positively skewed Negatively skewed

JAN.

Leptokurtic Platykurtic
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test items correctly answered or number of points accumulated—that each person in the
sample earns on a test or other research instrument. Each person's percentile rank is then
calculated as follows:

Number of other people scoring lower than the person
Total number of people in the sample

Percentile rank =
By che very nature of how they are calculated, percentile ranks spread people evenly over the
number of possible ranks one might ger; for instance, there will be roughly the same number of
people earning percentile ranks of 5, 35, 65, and 95. Furthermore, alchough percentile ranks rell
us how people have performed relative to one another, they do not tell us bow much chey differ
from one another in the characteristic being assessed. In essence, percentile ranks are ordinal data
and must be treated as such.

Choosing between Parametric and Nonparametric Statistics

Your choice of statistical procedures must depend to some degree on the nature of your data and
the extent to which they reflect a normal distribution. Some statistics, known as parametric
statistics, are based on certain assumptions about che nature of the population in question. Two
of the most common assumptions are these:

# The data reflect an interval or racio scale.
8 The data fall in a normal discriburion {e.g., the distribucion has a central high point, and
it is not seriously skewed, leptokurric, or platykurric).

When either of these assumprtions is violated, the results one obtains from parametric statistics
may be suspect.

Other staristics, called nonparametric statistics, are not based on such assumptions. For
instance, some ponparametric statistics are appropriate for data that are ordinal rather than
intecval in parure. Others may be usefal when a population is highly skewed in one direction or
the other.

You may be thinking, Why not use nonparametric statistics all the time to avoid having to
make (and possibly violare) any assumptions about the data? The reason is simple: Our most
complex and powerful inferential statistics are based on parametric statistics. Nonparametric
statistics are, by and large, appropriate only for relatively simple analyses.

On an optimistic note, we should point out that some statistical procedures are robust with
respect to cerrain assumptions. That is, they yield generally valid resules even when an assump-
tion isn’t met. For instance, a particular procedure might be as valid with a leptokurtic or plat-
ykurtic distribution as it is wich a normal distribution; it might even be valid with ordinal
racher than interval data. When using any stacistical cechnique, you should consult with a sta-
tistics textbook to determine whar assumptions are essential for that technique and what
assumptions might reasonably be disregarded. Some statistical sofeware packages routinely pro-
vide information about whether a particular dara set meets or violates certain assumptions and
make appropriate adjustments for non-normal discributions.

Descriptive Statistics

As their name implies, descriptive statistics describe a body of data. Here we discuss how to deter-
mine three things a researcher might want to know about a dara set: points of central tendency,
amount of variability, and the extent to which two or more variables are associated with one

another.
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Medasures of Ceniral Tendency

- FIGURE 11.8 |
Measures of central fen-
dency and variability for
Joe's grades

A point of central tendency is a point around which the data revolve, a middle number around
which the data regarding a particular varjable seem to hover. In statistical language, we use the
term measures of central tendency to refer to techniques for finding such a poinr. Three commonly
used measures of central tendency are the mode, the median, and the mean, each of which has its
own characteristics and applications.

The mode is the single number or score that occurs most frequently. For instance, in this
data set

346 7 7 9 9 9 9 10 11 11T 13 13 13 15 15 21 26

the mode is 9, because 9 occurs more frequently (four rimes) than any other number, Similarly,
if we look at the list of Joe's grades (see p. 273), we see that only one score (83) appears more
than once; chus, 83 is the mode. As a measure of central tendency, the mode is of limited value,
in part because it doesn’t always appear near the middle of the distribution and in past because
it isn'c very stable from sample to sample. However, the mode is the onfy appropriate measure of
central tendency for nominal data.

The median is the numerical center of a set of data, with exacdy as many scores above it as
below it. The word median is a derivation of the Larin word for “middle,” and so the median
score is the one precisely in the middle of the series. Recall that Joe's record has 20 grades. Thus,
10 grades are above the median, and 10 are below it. The median is midway in the series between
the 10ch and 11¢ch scores, or in this case, midway berween che scores of 81 and 83—that is, 82
(see Figure 11.8).

You might think of the mean as the fulcrum point for a set of data: It represents the single
point at which the two sides of a distribution “balance.” Mathematically, the mean is the arith-
metic average' of the scores within the daea set. To find it, we calculate the sum of all the scores
(adding each score every time it occurs) and then divide by the total number of scores. If we use
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the symbol X to refer to each score in the data set and che symbol N to refer to the total number
of scores, we calculate the mean as follows:
Xyt Xp+ Xy + ..+ Xy
N
Statisticians frequently use the symbol 2 (uppercase form of the Greek letter sigma) to designate

adding all of the numbers related to a parcicular variable; thus, we can rewrite the formula for a
mean as follows:

_ X
N
Using the formula, we find that che mean for Joe's grades is 81, as illustrated in Figure 11.8.
(The variation in Joe’s grades, depicted in the figure as measures of variability, is discussed shortly.)
The mean is the measure of cencral tendency most commonly used in stacistical analyses and
research repores. However, it is appropriate only for interval or ratio dara, because it makes
mathemarical sense to compute an average only when the numbers reflect equal intervals along
a particular scale.
The median is more appropriate for dealing with ordinal data. The median is also used fre-
quently when a researcher is dealing with a dara sec that is highly skewed in one direction or the
other. As an example, consider this set of scores:

3455 6 9 16 17 125

The mean for these scores is 21, a number that doesn't give us a very good idea of the point near
which most of the scores are located. The median, which in this case is 6, is a better reflection of
central tendency because it isn’t affected by the single extreme score of 125. Similatly, medians
are often used to reflect central tendency in family income levels, home values, and other such
financial variables; most family incomes and home values ate clustered at the lower end of the
scale, with only a very few extending into the million-dollar range.

Curves Determine Means

The mean as we have just described it—sometimes known as the arithmetic mean’—is most

appropriate when we have a normal distribution, or at least a distribution thar is somewhart sym-
metrical. But not all phenomena fit a bell-shaped pattern. Growth is one: It often follows an
ogive curve that eventually flattens into a plateau (see Figure 11.9).

Growth is a function of geometric progression. As an example, let's consider the work of
Thomas Robert Malthus, an English clergyman and economist who theorized about the poten-
tial for a population explosion and resulting wocldwide famine. In An Essay on the Principle of
Population (1826/1963), Malthus contended that, when unchecked, a population increases at an
exponential rate, in which each successive value depends, multiplicatively, on the preceding
value; for example, in the series 2, 4, 8, 16, 32, 64, 128 . . ., each number is twice the preced-
ing number. But Malthus also predicted that the size of the human population would eventu-
ally flatten out because there is an upper limit to what Mother Earth can produce in the way of
food o sustain the population. Thus, many growth cucves resemble an 5, as illustrated in
Figure 11.9.

If we are recording the groweh of bean stalks in an agronomy laboratory, we do not find
the average growth by assuming a normal distribution and calculating the arithmetic mean.
The stacistical technique does not fit the natural fact. Instead, we use the geometric mean,

which is computed by multiplying all of the scores together and then finding the Nth root of the

product. In other words, the geometric mean, which we can symbolize as Mg, is calculated as
follows:

2Again, the emphasis in arithmeric is on the third syllable ("ar-ith-MET-ic").
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FIGURE 11.9
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For growth phenomena, we use the geomertric mean because chat is the way things grow. Thar is
the way cells divide—geometrically.

Biologists, physicists, ecologists, and economists all encounter growth phenomena in one
form or another. They all witness the same typical aspects of change: a slow beginning (a few
settlers in an uninhabited region, a few bacteria on a culture); then, after a period of time, rapid
expansion (the boom period of city growth, the rapid maltiplication of microorganisms); and
finally—sometimes but not always—a leveling-off period {the land becomes scarce and che city
sprawl is contained by geographical and economic factors, the bacteria have populaced the entire
culture). Following are examples of situations in which the application of cthe geometric mean is
appropriare:;

8 Diological growth

# Population growth

B Increments of money at compound interese
¥ Decay or simple decelerarive sicuations

In every situation, one basic principle applies: The configuration of the dara dictates
the measure of central rendency most appropriate for that particular situacion. If the data
fall in a discriburion that approximates a normal curve (as most data do), chey call for one
measure of cencral tendency. If they assume an ogive curve configuration (characteristic of a
prowth situation), they demand another measure. A polymodal distribuiion—one with several
distinct peaks—might call for still a third approach; for instance, the researcher might
describe it in terms of its two ot more modes. Only after careful and informed consideration
of the characteristics of the data can the researcher select the most appropriate statistical
measure.

Thus, we must emphasize an essential rule for researchers who use statistics in their
daca analysis: The nature of the data—the facts of life—governs the sratistical technique, not the
other way around. Just as the physician must know whac drugs are available for specific dis-
eases and disorders, so the researcher must know whart statistical rechniques are suited to
specific research demands. Table 11.2 presents a summary of the measures of central ten-
dency and their uses, togecher with the various types of data for which each measure is

appropriate,
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Using megsures of cem‘
tendency for different
types of data
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Daita for Which
. A s "u: prop“c"e
Maode The most frequently * Data on nominai, ordingl, interval, and
occurring score is ratio scales
identified. * Mulimodal distributions (fwo or more

modes may be identified when a distri-
bution has multipte peaks)

Median # The scores are arranged + Data on ordingl, interval, and ratio
in order from smallest fo scales
largest, and the middle & Data that are highly skewed
score (when Nis an odd
number) or the midpoint
between the two middie
scores (when Nisan
even numbper} is
identified.

Arithmetic mean All the scores are added * Datfa on inferval and ratio scales
together, and theirsumis  « Data that fall in a normai distribution
divided by the fotal
number {N) of scores.

Geomelric: Mean All the scores are mult- « Daig on rafio scales
plied together, and the + Data that fall in an ogive curve {(e.g..
Nth root of their product growth data)
is computed.

Measures of Central Tendency as Predictors

Some researchers regard che matter of central tendency from a somewhat different standpoint.
They consider it from the perspective of optimal chance: What is the best prediction?

As an example, consider this situation. Suppose you are walking down the street. Suddenly
you come to a crowd of people forming in 2 normal-curve-like manner. Where, based on your
best prediction, will you find the cause for the crowd forming? The answer is simple. Where the
crowd is deepest, where the greatest number of people are, you will probably find the cause for
the gathering. It may be an accident, a street fight, or a person giving away free candy bars. But
whatever the occasion, your best guess about the cause of the gathering lies at the point where
the human mass is at its peak.

Similarly, we can often make reasonable predictions about a population based on our knowl-
edge of central tendency. When we speak of “the average citizen,” “the average student,” and
“the average wage earner,” we are referring to those citizens, students, and wage earners who are
huddled around the point of cencral tendency. In the broad spectrum of possibilities, we are bet-
ting on the average as being the best single guess about the nature of the toral population.

Measures of Variability: Dispersion and Deviation

Up to this point, we have been discussing the question, What is the best guess? Now we turn to
the opposite question: What are the worst odds? This, too, is important to know. The more that
the dara cluster around the point of central tendency, the greater is the probability of making a
cotrect guess about where any particular data point lies. The farther the data are dispersed from
the central axis, the greater the margin of predictive error becomes. Consider, for example, the
two curves shown in Figure 11.10. The data are more similar if chey cluster about the mean.
Scarter them, and they lose some of their uniformity; they become more diverse, more heteroge-
neous. As specific data points recede farther from the mean, they lose more and more of the qual-
ity that makes them “average.”
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To derive meaning from data, then, it’s important to determine not only their central ten-
dency but also their spread. And it often helps to pin down their spread in terms of one or more
quancictative values. '

How Great is the Spread?

The simplest measure of variability is the range, which indicates the spread of the data from
lowest to highest value:

Range = Highest score ~ Lowest score

For instance, the range for Joe's test scores is 92 - 69, or 23 (see Figure 11.8).

Although the range is easy to compute, it has limited usefulness as a measure of variabilicy
and may even be misleading if the extreme upper or lower limits are atypical of the other values
in the series. Let’s take an example. Following are the numbers of children in each of ten families:
1,3,3,3,4,4,5, 5,6, 15. We might say that the families range from one with a single child to
a family of 15 children (a range of 15 — 1, or 14). But this figure is misleading: I suggests that
the sample shows a great deal of variability in family size. We give a more realistic estimate of
variability in chis sample if we say that 809 of the families have from 3 to & children.

Other measures of variability use the median or mean as a starting point. One such measure
is the interquartile range. If we divide the discribution into four equal parts, Quartile 1 fies ac
a point where 259 of the members of the group are below it. Quartile 2 divides che group into
two equal parts and is identical to the median. Quartile 3 lies at a point where 75% of the values
are below it.> The interquartile range is equal to Quartile 3 (the 75th percentile poine) minus
Quartile 1 {the 231h percentile point), as follows:

Inferguartile range = Quartile 3 - Quartile 1

Thus, che interquartile range gives us the range for the middle 50% of the cases in the distribu-
tion. Because quartiles are associated with the median, any reseaccher employing the median as
a measure of central tendency should also consider the quartile deviation as a possible statistical
measure for variability. :

But now lets instead use the mean as a starting point. Imagine that we determine how far
away from the mean each piece of dara is in the distribution. That is, we calculate the difference
berween each score and the mean score (we call chis difference the deviation). If we were to add all
of these differences (ignoring the plus and minus signs) and then divide the sum by the zumber
of scores {which reflects the number of score—mean differences as well), we get the wverage of the

3If, inscead of dividing the data into 4 equal parts, we divide them into 10 egual pares, each part is called a decsle; if into 100
equal pares, each pare is called a percentile.
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would simply multiply the z by che new scale’s standard deviation (5,0 2nd then add the new
scale’s mean (M___) to the producr obtained, as follows:

New standard score = (Z X S,.,,) + My

Let’s rake an example. One common standard-score scale is the IQ scale, which uses a mean
of 100 and a standard deviation of 15. (As you might guess, this scale is the one on which intel-
ligence test scetes are typically based.) If we were to convert Mary's extroversion score to the IQ
scale, we would plug her z-score of 2, plus a standard deviation of 15 and 2 mean of 100, into the
preceding formula, as follows:

IQ score = (2 X 15) + 100 = 130

Thus, using the IQ scale, Mary’s score on the extroversion test would be 130.
Another commonly used standard-score scale is the stanine. Stanines have a mean of 5 and a
standard deviation of 2. Mary’s stanine would be 9, as we can see from the following calculation:

Stanine=(2x2)+5=9

Stanines are a/ways a whole number from 1 to 9. If our calculations gave us a number with a frac-
tion or decimal, we would round it off to the nearest whole number. If some of our calculations
resulted in numbers of 0 or less, or 10 or more, we would change those scores to 1 and 9,
respectively.

Standard scores take a variety of forms, each with a prespecified mean and standard devia-
tion; z-scores, 1QJs, and stanines are juse three c:xaunples.4 But in general, standard scores give us
a context that helps us interpret the scores: If we know the mean and standard deviation on
which the scores are based, then we also know where in the distribution any particular score lies.
For instance, an IQ score of 70 is two standard deviations (30 points) below cthe mean of 100,
and a stanine score of 6 is one half of a standard deviation (1 is half of 2) above the mean of 5.

Converting data to standard scores does not change the shape of the distribution; it merely
changes the mean and standard deviation of that distribution. Buc imagine that, instead, we &b
want to change the nature of the distribution. Perhaps we want to change a skewed distribution
into a more balanced, normally distributed one. Perhaps, in the process, we also want to change
ordinal data into interval dara. Several procedures exist for doing such things, but describing
them would divert us from the basic nature and functions of statistics that we need to focus on
here. You can find discussions of #ormalizing a data set in many basic stacistics textbooks; another
good resource is Harwell and Garti (2001).

Keeping Measures of Central Tendency
and Variability in Perspective

Statistics related to central tendency and variability help us summarize our data. But—so as not
to lose sight of our ultimate goal in conducting research—we should remind ourselves that sta-
tistical manipulation of the darta is 7oz, in and of itself, research. Research goes one step further
and demands interprezation of the data. In finding medians, means, interquartile ranges, or scand-
ard deviations, we have not intetpreted the data, nor have we extracted any meaning from them.
We have merely described the cenrer and spread of the data. We have attempted only to see what
the data look like. After learning their basic nature, we should then look for conditions that are
fotcing the dara to behave as they do. For example, if we toss a pair of dice 100 cimes and one
particular die yields a 5 in 80 of those tosses, we will have a distribution for chat die much dif-
ferent from what we would expect. This may suggest to us that a reason lurks behind the par-
ticular results we have obtained. For example, perhaps we are playing with a loaded die!

4A standard score gaining increasing popularicy for reporting academic achievement rest results is the NCE seors, which has a
mean of 50 and a standard deviation of 21.06. With this particular (and seemingly very odd) standard deviation, an NCE score
of 1 is equivalent co a percentile scare of 1 and, likewise, an NICE score of 99 is equivalent roa perceneile score of 99.
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Measures of Association: Correlation

‘The statistics described so far—measures of central tendency and variability—involve only a
single variable. Oftentimes, however, we also wanr to know whether two or more variables are in
some way assoctated with one another. For example, relationships exist becween age and reading
ability (as illuscrated in Figure 8.1 in Chapter 8), between emotional state and physical healch,
between the amounc of rainfall and the price of vegerables in the markerplace. Consider, oo, the
relationships berween temperarure and pressure, between the intensity of light and the growth
of plants, between the administracion of a certain medication and the resulting platelet aggluti-
nation in the blood. Relationships among variables are everywhere. One function of statistics is
to capture the nature and scrength of such relationships.

The scatistical process by which we discover whether two or more variables are in some way
associated with one another is called correlarion. The resulting statistic, called a correlation coef-
ficient, is a number between —1 and +1; most correlation coefficients are decimals (either
posicive or negative) somewhere between these two extremes. A correlarion coefficient for two vari-
ables simuleaneously tells us two different things about the relationship between those variables:

& Direction.  The direction of the relacionship is indicated by the sign of the correlation
coefficient—in other words, by whether the number is a positive or negative one. A posi-
tive number indicates a positive correlation: As one variable increases, the other variable
also increases. For example, there is 2 positive correlacton between self-esteem and school
achievement: Scudents with higher self-esteemn achieve at higher levels {e.g., Marsh,
Gerlach, Trautwein, Lidcke, & Breteschneider, 2007). In contrast, a negative number
indicates an inverse relationship, or negative correlation: As one variable increases, the
other variable decreases. For example, there is a negarive correlation becween the number
of friends children have and the likelihood that they’ll be victims of bullying: Children
who have many friends are Jess likely to be bullied by their peers than are children who
have few or no friends (e.g., Espelage & Swearer, 2004).

® Strength.  The strength of the relacionship is indicated by the size of the correlation coef-
ficient, A correlation of +1 or —1 indicates a perfect correlation: If we know the degree to
which one characteristic is present, we know exactly how much of the other characteristic
exists. For example, if we know the length of a horseshoe crab in inches, we aiso know—or
at least we can quickly calculate—exactly whac its length is in centimeters. A number
close to either +1 or —1 (e.g., +.89 or —.76) indicates a strong correlation: The two vari-
ables are closely related, such that knowing the level of one variable allows us to predict
the level of the other variable with considerable accuracy. For example, we often find a
scrong relationship between two incelligence tests taken at the same time: People rend to
get similar scores on both tests, especially if both rests cover similar kinds of content {e.g.,
McGrew, Flanagan, Zeich, & Vanderwood, 1997). In conrcrast, a number close to 0
{e.g., T.15 or —.22) indicates a weat correlation: Knowing the level of one variable allows
us to predict the level of the other variable, but we cannot predice with much accuracy. For
example, there is a weak relationship between intelleceual gifeedness and emotional
adjustment: Generally speaking, people with higher IQ scores show greater emotional
maturicy than people with lower scores (e.g., Janos & Robinson, 1985), but many people
are exceptions ro this rule, Correlations in the middle range (for example, those ia the .40s
and .50s, positive or negative) indicate a moderate correlation.

The most widely used statistic for determining correlation is the Pearson product moment
correlation, sometimes called the Pearson . But chere are numerous other correlation statistics as
well. As in the case of the central tendency, the natute of the data determines the technique that
is most appropriate for calculating correlation. In Table 11.4, we present several paramerric and
nonparametric correlacional techniques and the kinds of data for which they are appropriate,

One especially noteworthy statistic in Table 11.4 is the wefficient of determination, or R This
statistic, which is the squate of the Pearson +, tells us bow much of the variance is accounted for by the
correlation. Although you will see this expression used frequencly in research reporrs, researchers
usually don't stop to explain what it means. By veriance, we are specifically referring to a particular
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TABLE 11.4

Examples of correlational
stafistics
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] Parametric Sialistics
Pearson product r Both variables involve continuous data.
moment correlation
Coefficient of 2 This is the square of the Pearson product moment
determincﬁop correlation; thus, both variables involve continuous data.
Point biserial fop One variable is continuous; the other involves discrete,
correlation dichotomous, and perhaps nominal dafa (e.g., Pemocrats

vs. Republicans, males vs. females).

Biserial correlation s Both variables are continuous, but one has been artificially
divided into an either-or dichotomy (e.g., "above freezing”
vs. "below freezing,” “pass” vs. “fail”).

Phi coefficient b Both variables are frue dichotomies.

Triserial correlation fin One variable is continuous; the other is a trichofomy
{e.g.. low.” "medium.” "high™).

Partial correlation N3 The relctionship between two variables exists, in part,
because of their relationships with & third variable, and
the researcher wants to “factor out” the effects of this third
variable (e.g., what is the relationship between motivation
and student achievement when & is held constant
statistically?}.

Multiple cormelation R o One variable is related to fwo or more variables: here the
researcher wants to compute the first variable’s combined
relationship with the others.

Nonparametric Statislics

Spearman rank P Both variables involve rank-ordered data and so are

order correlation ordinal in nature.

(Spearman’s tha)

Kendall coefficient w Both variables involve rankings (e.g., rankings made by

of concordance independent judges regarding a particular characteristic)

and hence are ordinal data, and the researcher wants fo
determine the degree to which the rankings are similar.

Contingency C Both variables involve nominal data.

coefficient

Kendall's tau T Both variables involve ordinal data; the statistic is
correlation especially useful for small sample sizes (e.g.. N < 10).

measure of vatiability mentioned earlier: the square of the standard deviation, o 5%, For example,
if we find that, in our data set, the R? between Variable 1 and Variable 2 is .30, we know that 30%
of the variability in Variable 1 is reflected in its relationship with Variable 2. This knowledge will
allow us to control for—and essentially reduce—-some of the variability in our data set through
such statistical procedures as partial correlation and analysis of covariance (described in Table 11.4
and later in Table 11.5, respeccively). It is important to note, too, that the correlation statistics
presented in Table 11.4 are all based on an important assumption: that the relationship between
the two variables is a /inesr one—thac is, as one variable continues to increase, the other continues
to increase (for a positive correlation) or decrease (for a negative cotrelation). Not all relationships
take a linear form, however. For example, consider che relationship between body mass index
(a general measure of a person’s body fat; often abbreviated as BMI) and anxiety. In one recent -
study (Scott, McGee, Wells, & Browne, 2008), researchers found that anxiety was highest in peo- -
ple who were either very underweight or very overweight; anxiety was lowest for people of rela

tively average weight. Such a relationship is known as a U-thaped relationship (see Figure 11.11).
U-shaped and other nonlinear relationships can be detected through scatter plots and other graphic
techniques, as well as through certain kinds of statistical analyses (e.g., see B. Thompson, 2008).




Chapter 11 Strategies for Analyzing Quantitative Data 295

_ FIGURE 11.12
Distribution of sample
means

\l__l
F’opulaticnnn'j & Standard error
mean {1} of the mean (o,)

Random samples from populations—please note the word rendom here—display roughly
the same characteristics as the popularions frorn which they were selected. Thus, we should
expect the mean height for our sample to be approximately the same as the mean for the overall
population. It will not be exactfy the same, however. In face, if we were to collect the heights for
a second random sample of 200 boys, we would be likely to compute a slightly different mean
than we had obtained for the first sample.

Different sarnples—even when each has been randomly selected from the same popula-
tion—will almost cerrainly yield slighely different estimates of the overall population. The dif-
ference between the population mean and a sample mean constitures an error in our estimation.
Because we don’t know what the exact population mean is, we also don’t know how much error
is in our estimate. We 4o know chree things, however:

1. The means we might obtain from an infinite number of random samples form a normal
diseribation.

2. The mean of this distribution of sample means is equal to the mean of the population from
which the samples have been drawn (p). In other words, the population mean equals the
average, or mean, of all the sample means.

3. The standard deviation of this distribution of sample means is directly related to che
standard deviation of the characteristic in question for the overall population,

This siruation is depicted in Figure 11.12,

The chird characteristic just listed—the standard deviation for che distribution of sample
means—is called the standard error of the mean. This index tells us how much the particular
mean we calculate is likely to vary from one semple to another when all samples are the same size
and are drawn randomly from the same popalation. Scatistically, when all of the samples ate of a par-
ticular size (%), the standard error of the mean is represented as

_0'

Here we are faced at once with a problem. The formula we just presented involves using the
population standard deviation (@), but the purpose of using the sample was to avoid having ro
measure the entire population. Fortunately, statisticians have devised a way to estimate che
standard error of the mean from the standard deviation of a semple drawn from the population.
This formula is

s

Estimated o, =

n-1
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inferential S’ra’ris’rics

As mentioned earlier, inferential scatistics allow us to draw inferences about large popula-
tions from relatively small samples. More specifically, inferential statistics have two main
functions:

1. To estimate 2 population parametet from a random sample
2. To test statistically based hypotheses

In this cext, we do not have the space to venture too far into these areas; statistics textbooks can
give you more detailed information. However, we comment briefly about several general con-
cepts and principles.

Estimating Population Parameters

When we conduct research, mote often than not we usea sample to learn about the larger popu-
lation from which the sample has been drawn. Typically we compute various statistics for the
sample we have studied. Inferential statistics can tell us how closely these sample statistics
approximate parameters of the overall population. For instance, we often want to estimate popu-
lation parameters related to central tendency (the mean, or 1), variabilicy (the standard devia-
tion, or ), and proportion (F). These values in the population compare wich che M ot X, the s,
and the p of che sample (see Table 11.1, page 278y

To show you what we mean by estimation, we use a simple illustracion. Jan is a production
manager for a large corporation. The cotporation manufactures a piece of equipment that requires
a connecting-rod pin, which the corporation also manufactures. The pin fits stugly into a par-
ticular joint in the equipment, permitting a metal arm to swivel within a given arc. The pin’s
diameter is critical: If the diameter is too small, the arm will wobble while curning; if it is too
large, the arm will stick and refuse to budge. Jan has received complaints from customers that
some of the pins are faulty. She decides to estimate, on the basis of a random sample of the con-
necting-rod pins, how many units of the equipment may have to be recalled in order to replace
their faulty pins. From this sample, Jan wants to know chree facts about the chousands of equip-
mene unics that have been manufactured and sold:

1. What is the average diameter of the pins?
2. How widely do the pins vary in diameter?
3, What propostion of the pins are acceptable in the equipment units already sold?

The problem is to determine population parameters on the basis of the sample statistics.
From the sample, Jan can estimate the mean and variability of the pin diameters and the propot-
tion of acceptable pins within the population universe. These are the values represented by p, the
«, and the P.

Sratistical estimates of population pararneters are based on the assumption that the sample it
randomly chosen and representative of the total papulation. Only when we have a random, representa-
tive sample can we make reasonable guesses about how closely our statistics estimate population
parameters. To the extent that a sample is nonrandom and therefore nonrepresentative—to the
extent that the sample’s selection has been biased in sOme way—Our statistics may be poor reflec-
tions of the population from which it has been drawn.

An Example: Estimating a Population Mean

Imagine that we want to estimate the average (mean) height of 10-year-old boys in the state of
New Hampshire. Measuring the heights of the entire population would be incredibly
time-consuming, so we decide to measure the heights of 2 random and presumably representa-
tive sample of, let’s say, 200 boys.
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Notice how, in both formulas, the standard error of the mean is directly related to che stand-
ard deviation of che characteristic being measured: More variability in the population leads to a
larger standard error of the mean—rthat is, to greater variability in the sample means thar we
might obtain. In addition, the standard ecror is inversely related to #, the size of the sample. As
the sample size increases, the standard error of the mean decreases. Thus, a larger sample size
will give us a sample mean that more closely approximates the population mean. This principle
holds true f:(,)r estimates of other population parameters as well. In general, larger samples yield
move accureie estimates of population parameters,

Point versus interval Estimates

When using sample statistics to estimare population parameters, we can make two types of esti-
mates: point estimates and interval estimares.

A point estimate is a single statistic that is used as a reasonable estimate of the correspond-
ing population parameter; for inscance, we mighr use a sample mean as a close approximation to
the population mean. Alchough point estimates have the seeming benefit of being precise, in
fact this precision is illusory. A point estimate typically does nof correspond exactly with its
equivalent in the population. Let’s return to our previous example of the connecting-rod pins.
Perhaps the company has produced 500,000 pins, and Jan has selected a sample of 100 of them.
When she measures the diameters of these pins, she finds that the mean diameter is 0.712 cen-
timeter, and the standard deviation is 0.020 centimeter. She guesses that the mean and scandard
deviation of the diameters of &// of the pins are also 0.712 and 0.020, respectively. Her estimates
will probably be close—and they are certainly better than nothing—but they won't necessarily
be dead-on.

A more accurate approach—although still not 100% dependable-—is to idencify inter-
val estimates of parameters. In particular, we specify a range within which a population
parameter probably lies;, and we state the probability that it actually lies there. Such an inter-
val is often called a confidence interval because it attaches a certain level of probabilicy to
the estimate—a certain level of confidence that the estimated range includes che population
parameter.

As an example, Jan might say that she is 95% certain that the mean of the 500,000 con-
necting-rod pin diameters her company has produced is somewhere between 0.708 and 0.716.
What Jan has done is to derermine that the standard error of the mean is 0.002 (see the previ-
ously presented formula for estimated oM). Jan knows that sample means fall in a normal
distribution (look once again at Figure 11.12). She also knows that normal distributions have
predictable proportions within each section of the curve (look once again at Figure 11.6). In
particular, Jan knows that about 68% (34.1% + 34.1%) of the sample means lie within one
standard error of the population mean, and that about 95% (13.6% + 34.1% + 34.1% +
13.6%) lie within two standard errors of the population mean. What she has done, then, is to go
rwo standard ertors (2 X 0.002, or 0.004) to either side of her sample mean (0.712} to arrive at
her 95% confidence interval of 0.708 t0 0.716.

We have said enough about estimation for you to appreciate its importance. To venture
furcher would get us involved in specific statistical procedures that are not the province of this
texc. For additional guidance, we urge you to consult one or more statiscics textbooks, such as
those listed in the “For Further Reading™ list at the end of the chapter.

Testing Hypotheses

The second major function of inferential stacistics is to test hypotheses. At the outset, we should
clarify our terminology. The term Aypothesis can confuse you unless you understand that it has
two different meanings in research literature. The first meaning relates to a research hypotbesis; the
second relates to a statistical hyporhesis.
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Most of our discussions of hypotheses in earlier chapters have involved the first meaning of
the word Aypothesis (e.g., recall Chapter 1's discussion of the homeowner who speculates about
why a table lamp may have failed). In forming a research hypothesis, a researcher speculates
about how che research problem or one of its subproblems might be resolved. A research hypoth-
esis is a reasonable conjecture, an educaced guess, a theoretically or empirically based prediction.
Its purpose is a practical one: It provides a temporary objective, an operational target, a logical
framework that guides a researcher as he or she collects and analyzes data.

When we encounter the phrase “testing a hypothesis,” however, the martcer is entirely dif-
ferent, Here the word hypotheris tefers to a statistical hypothesis, usually a #ell hypothesis.
A null hypothesis (often symbolized as H) postulates thac any resule observed is the result of
chance alone. For instance, if we were to compare the means of two groups, our null hypochesis
would be that both groups ate parts of the same population and that any differences between
them—including any difference we see between their means—are strictly che result of the fact
that 2zy two samples from the population will yield slighely different estimates of a population
parameter.

Now let’s say that we look at the probability thar our result is due to chance alone. If, for
example, we find that a difference berween two group means would, if due entirely to chance,
occur only one time in a thousand, we could reasonably conclude that the difference is #or due to
chance—thatr, instead, something in the siruation we are studying {perhaps an experimental
trearment we have imposed) is systematically leading to a difference in the groups’ means. This
process of comparing observed data with che results that we would expect from chance alone is
called testing the null hypothesis.

At what point do researchers decide that a resule has #or occurred by chance alone? One
common cutoff is a 1-in-20 probability: Any resule that would occur by chance only 5% of
the rime—thar is, a result that would occur, on average, only one time in every 20 cimes—
probably is nor due to chance but instead to another, systematic factor chat is influencing the
data. Ocher researchers use a more rigorous 1-in-100 criterion: The observed result would
occur by chance only one time in 100. The probability that researchers use as their cutoff
point, whether .05, .01, or some other figure, is the significance level, or alpha (o). A result
that, based on this criterion, we deem w»e¢ to be due to chance is called a statistically signifi-
cant result. When we decide chat a resule is due to someching other than chance, we repect 2he
null bypothesis.

In the “Results” section of a research report, you will often see the researcher’s alpha level
implied in parentheses. For example, imagine that a researcher reports that “a -test revealed
significantly different means for the two treatment groups (p < .01)." The “p < .01” here
means that the difference in means for the ewo groups would occur by chance less than one
time in 100 if the two groups had been drawn from the same population. Sometimes, instead,
a researcher will state the actual probability wich which a result might occur by chance
alone. For example, a researcher might report that “a z-test revealed significantly different
means for the two treatment groups (¢ = .003).” The “f = 003" here means that a difference
this large would occur only three times in 1,000 for two groups that come from the same
population. In chis situation, then, chances are good that the two groups come from differen:
populations—a round-about way of saying that che two creatments differentially affecred che
ouccome.

When we reject the null hypothesis, we must look to an alternative hypothesis-——which
may, in fact, be the rerearch hypothesis—as being more probable. For example, if our null hypoth-
esis 15 that two groups are the same and we then obtain data that lead us co reject this hyporhe-
sis, we indirectly support the opposite hypothesis: that the two groups are Jifferern:.

In brief, we permit a certain narrow margin of variation within our data, which we deem to
be natural and the resulc of pure chance. Any variation within this statistically permissible range
is not considered to be important enough to claim our attention. Whartever exceeds these limirs,
however, is considered to be the result of some determinacive factor other than chance, and so che
influence is considered to be an important one. The term significant, in the statistical sense in
which we have been using it, is close to its etymological meaning—namely, “giving a signal”
that certain dynamics are operating within the data and meric arrention.
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Making Errors in Hypothesis Testing

It is possible, of course, that we may make a mistake when we decide rhat a particular resule is
nor the result of chance alone. In fact, any resule could conceivably be due to chance; our sample,
alchough selected randomly, may be a fluke that displays atypical characteristics simply through
the luck of che draw. If we erroneously conciude thar a result was not due to chance when in fact
it war due to chance—if we incorrectly reject the null hypothesis—we ate making a Type 1
error (also called an apha error).

Yet in another situation, we might conclude that a result is due to chance when in fact it is
not. In such a circumstance, we have failed to reject a null hyporhesis that is actually false—
something known as a Type II error (also called a feta error). For example, imagine that we are
testing the relative effects of a new medication versus the effects of a placebo in lowering blood
cholesterol. Perhaps we find that people who have been taking the new medication have, on
average, a lower cholesterol level than people taking the placebo, but the difference is a small
one. We might find that such a difference could occur 25 times out of 100 due to chance alone,
and so we vetain the null hyporhesis. If, in actuality, the medication does reduce cholesterol more
than a placebo does, we have made a Type Il error.

Staristical hypothesis testing is all a macter of probabilities, and chere is always the chance
that we could make either a Type I or Type IT error. We can decrease the odds of making a Type I
error by lowering our level of significance, say, from .05 to .01, or perhaps to an even lower level.
In the process of doing so, however, we increase the likelihood that we will make a Type II
error—that we will fail to reject a null hypothesis that is, in fact, incorrect. To decrease the prob-
ability of a Type II error, we would have to increase our significance level (&), which, because it
increases the odds of rejecting the null hypothesis, also increases the probability of a Type I error.
Obviously, then, there is a trade-off between Type I and Type II errors: Whenever you decrease
the risk of making one, you increase the risk of making the ocher.

To illustrate this trade-off, we return to our study of the potentially cholesterol-reducing
medication. There are four possibilities:

We cortectly conclude that the medicarion reduces cholesterol.
We correctly conclude that it does not reduce cholesterol.

We mistakenly conclude that it is effective when it #27%

We mistakenly conclude that it isn’t effective when it 7.

PN e

These four possibilities are illustrated in Figure 11.13. The three vertical lines illustrate three
hypothetical significance levels we might choose. Imagine that the dashed middle line, Line A,
represents a significance level of, say, .05. In this particular sitvation (such will not always be the
case), we have a slightly greater chance of making a Type I error (represented by the upper
shaded area) than of making a Type II error {represented by the lower shaded area). Buc the sig-
nificance level we choose is an arbitrary one. We could reduce our chance of a Type I error by
decreasing our significance level to, say, .03. Line B to the right of Line A in the figure represents
such a change; notice how it would create a smaller box (lower probability} for a Type 1 error buc
create a larger box (greater probability) for a Type II error. Alternatively, if we raise the signifi-
cance level to, say, .06 (as might be represented by Line C, to the left of Line A in the figure), we
decrease the probability of a Type II error but increase the probability of a Type I ecror.

There is pechaps nothing more frustrating for the novice researcher than obtaining insig-
nificant results—those that, from a statistical standpoine, could have been due to chance alone.
Following are three suggestions for decreasing the likelihood of making a Type II error and
thereby increasing the likelihood of correctly rejecting an incorrect null hypothesis. In other
words, these are suggestions for increasing the power of 2 statistical rest:

B Use as large a sample size as is reasonably possible.  'The larger the sample, the less the sta-
tistics you compute with diverge from actual population parameters.’

SFormulas exist for computing the power of statistical procedures for varying sample sizes., For example, see Lipsey {1990) or
Murphy, Myors, and Wolach (200%).
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Our conclusion
about the medication

Bensficial
effect

No beneficial
effect

No beneficial Correct
effect conclusion

Correct

Beneficial i
i conclusion

effect

Reality {the Truth)
about the medication

B Maximize the validity and reliability of your measures. Measures of variables in a research
study rarely have perfect (100%) validity and reliability, bur some measures are more
valid and reliable than others. Research projects that use measures with high validity
and reliability are more likely to yield seatistically significant results. (Again we refer
you to the section “Validity and Reliability in Measurement” in Chaprer 4.)

B Use paramesric rather than nonparametric statistics whenever possible.  As a general rule, non-
parametric statistical procedures are less powerful than parametric techniques. By “less
powerful,” we mean that nonpatametric statistics typically require larger samples to
yield results that enable the researcher to reject the null hypothesis, When characreris-
tics of the data meer the assumptions for parametric statistics, then, we urge you to use-
these staristics. (Look once again at the section “Choosing between Parametric and
Nonparametric Statistics” earlier in this chaprter.)

It is important—in fact, critical—to keep in mind that whenever we test more than one statisti-
cal hypothesis, we increase the probability of making at least one Type I error. Let's say that, for a par-
ticular research project, we have set che significance level at .05, such that we will reject the null
hypothesis whenever we obtain resuits that would be due to chance alone only 1 rime in 20. And
now let’s say that as we analyze our data, we perform 20 different statistical tests, always setting
o ac .05, In this situation, although we won’t necessarily make a Type I errot, the odds are fairly
high that we will

Another Look at Statistical Hypotheses
versus Research Hypotheses

Novice researchers sometimes become so wrapped up in their statistical analyses that they lose
track of their overall research problem or hypothesis. In fact, testing a null hypothesis involves

5When testing 20 hypotheses at a .05 significance level, che probability of making at least one Type I error is .642—in ather
words, chances are better than 50-50 that ar least one Type 1 error is being made. In general, the probability of making a Type
T error when conducting multiple statistical tests is 1 - (1 - «)f, where & (alpha} is the significance level and r is the number
of tests conducred.
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nothing more than a stacistical comparison of two distributions of data—one hypothetical
(a theoretical ideal) and one real (the distribution of data collected from a research sample).
A researcher simply uses one or more statistical procedures to determine whether calculated
values sufficiencly diverge from the statiscical ideal to reject the null hypothesis.

Testing a statistical hypothesis does not, in and of itself, contribure much to the fulfillment
of the basic aim of research: a systematic quest for undiscovered knowledge. Certainly statistical
analyses are invaluable tools char enable us to find patterns in the data and thus help us derect
possible dynamics working withio the dara. But we must never stop with statistical procedures
that yield one or more numerical values. We must also interpret those values and give them
meaning. The lacter process includes the former, but the two should never be confused.

It is often the case that the statistical hypothesis is the opposite of the research hypochesis.
For example, we might, as our research hypothesis, propose that two groups are different from
one another. As we begin our statistical analysis, we set out £o test the statistical hypothesis that
the two groups are the same. By disconfirming the null hypothesis, we indirectly find support for our
research bypothesis. This is, to be sure, a backdoor approach to finding evidence for a research
hypothesis, yet it is the approach that is typically taken, The reasons for this approach are too
complex to be dealt with in a text such as this one. Suffice it to say that it is mathematically
much easier to test a hypothesis that an equivalence exists than to test a hypothesis that a differ-
ence exists.

Examples of Statistical Techniques for Testing Hypotheses

Table 11.5 lists many commonly used paramettic and nonparametric statistical techniques for
testing hypotheses. We hope it will help you make decisions about the technigues that are most
appropriate for your own research situation. As you can see in the table, however, nonparametric
techniques exist only for relatively simple statistical analyses, such as comparing measures of
central tendency or testing the statistical significance of correlations. When your research prob-
lem calls for a relatively sophisticated analysis (e.g., multiple regression or structural equation
modeling), parametric statistical procedures—and the underlying assumptions about the data
these procedures require—are your only viable option.

We urge you to consult one or more statistics texts ¢o learn as much as you can about what-
ever statistical procedures you use. Becter still, enroll in one or more seatistics courses! You can
successfully solve your research problem only if you apply statistical procedures appropriately
and thereby conduct accurate analyses of your dara. '

Occasionally researchers use inferential statistics not to analyze and draw conclusions from data
they have collected buc instead to analyze and draw conclusions abouc ather researchers' statistical
analyses. Such analysis of analyses is known as meta-analysis. A meta-analysis is most useful
when many studies have already been conducted on a particular topic or research problem and
another researcher wants to pull all of the resules together into a neac and mathematically con-
cise package.

The craditional approach to synthesizing previous studies related to a particular research
question is simply to describe them all, pointing out which studies yield which conclusions,.
which studies contradict others, and soon. In a meta-analysis, however, the researcher integrates:
the studies statistically rather than verbally. After pinning down the research problem, che,
researcher: :

1. Conducts a fairly extensive search for relevant studies. The reseaccher does not choose arbi
crarily among studies that have been reported about the research problem. Instead, h
or she uses some systematic and far-reaching approach (e.g., searching in several pré
specified professional journals, using certain keywords in a search of online database
to identify studies that have addressed the topic of interest.
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: TABLE 11.5

Examples of inferential
statistical procedures and
their purposes Student’s To determine whether a statistically significant difierence exists between two

Parametric Stalistics

Hest means. A Hest takes slightly different forms depending on whether the two
means come from separate, independent groups (an independeni-samples
Hest) o instead, from a single group or two inferrelated groups (a dependent-
samples t-fest).

Analysis of To examine differences among three or more means by comparing the vari-

variance ances (s2) both within and across groups. As is true for Hests, ANOVAs fake

(ANOVA) slightly different forms for separate, independent groups and for a single group;
in the latter cose, o repeated-meosuires ANOVA is called for. If an ANOVA yields o
significant result (i.e., o significant value for F), you should follow up by compar-
ing various pairs of means using a post hoe comparison of means.

Analysis of To look for differences among means while controlling for the effects of a varia-

covariance ble that is correlated with the dependent variable (the former variable is called

(ANCOVA)Y a covarigte). This technique can be statistically more powerful than ANOVA (Le.,
it decreases the probability of a Type |l error).

Hest for o To determine whether a Pearson product moment corelation coefficient (1) is

coirelation larger than would be expected from chance alone,

coefficient

Regression To examine how effectively one or more variables allow(s) you to predict the
value of another (dependent) variable. A simple linear regression generates an
equation in which a single independent variable yields a prediction for the
dependent variable. A multiple linear regression yields an equation in which two
or moie independent variables are used fo predict the dependent variable.

Factor Ta examine the corelations omong a number of variables and Identify clusters of

analysis highly inferrelated variables that refliect underlying themes, or factors, within the data.

Structural To examine the correlations among a number of variables—often with different

equation variables measured for o single group of people at different points in firne—in

meodeling order to identify possible causal relationships (paths) among the variables. SEM

(SEM) encompasses such techniques as path analysis and confirmatory analysis and
Is typically used to test o previously hypothesized model of how vatiables are
causally interrelated. SEM enables a researcher fo identify a mediator in a rela-
tionship: a third variable that may help explain why Variable A seemingly leads
fo Variable B (.., Variable A affects the mediating variabie, which in turn affects
Variable B). SEM also enables a researcher to identify a moderator of a relation-
ship: a third variabie that alters the nature of the relationship between Variables
A and B (e.g.. Variables A.and B might be corelated when the moderating
variable is high but not when it is low, or vice versa). (Mediating and moderating
variables are discussed in more detail in Chapter 2.} When using SEM. the
researcher must keep in mind that the data are correlational in nature; thus, any
conclusions about cause-and-effect relationships are speculative af best,

Nonparamsetric Stafistics
Mann- To compare the medians of two groups when the dafa are ordinal rather than
Whitnay U inferval in nature. This procadure is the nonparametric counterpart of the

independent-samples *est in parametric stalistics.

Kruskal-Wallis  To compare three or more group medians when the data are ordinal rather than

test inferval in nature. This procedure is the nonparametric counterpart of ANOVA.
Wilcoxon To compare the medians of two correlated variables when the data are ordinal
signed-rank rather than inferval in nature. This procedure is a nonparametric equivalent of a
test dependentsamples Hest in parametric stafistics.

Chisquare (x2) To determine how closely observed frequencies or probabilities match expected
goodness-offit  frequencies or probabilities. A chisquare con be computed for nominal, ordinal,
fest interval, or rafio data.

Odds ratio To detfermine whether two dichotomous nominal variables (e.g.. smokers vs. non-
smokers and presence vs. absence of heart disease)} are significantly correlated.
This is one nonparametric akternative to g Hest for Pearson’s r.

Fisher's exact  To determine whether two dichotomous variables {ncminal or ordinal} are
test significantly correlated when the sample sizes are quite small (e.g., n < 30).
This is another nonparametric alternative to a test for Pearsen's .
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2. Identifies appropriate studies to include in the meta-analysis.  The researcher limics the cho-
sen studies to those that involve a particular experimental rreatment (in experimencal
studies), pre-existing condition (in ex post facto studies), or other variable that is the
focus of the meta-analysis. He or she may furcher restrice the chosen studies to those
that involve particular populations, settings, assessment instruments, or other factors
thar may impact a study’s outcome.

3. Converts each study'’s results to a common statistical index.  Previous researchers may pos-
sibly have used different statistical procedures to analyze their data. For example, if
each researcher has compared two or more groups that received two ot more different
experimental interventions, one investigator may have used a ¢-test, another may
have conducted an analysis of variance, and a third may have conducted a multiple
regression. The meta-analytic researcher’s job is to find 2 common denominator here.
Typically, when an experimental intervention has been studied, an effect size is cal-
culated for each study; thar is, the researcher determines how much of a difference
the intervencion makes {(in terms of standard deviation units) in each study. The
effect sizes of all of the studies are then used to compute an average effect size for thac
intervention.

The statistical procedures used in meta-analyses vary widely, depending, in part, on the
research designs of the included sctudies; for instance, correlacional studies require different
meta-analytic procedures than experimental studies. We must point our, too, that meta-analyses,
although chey can make an important contribution to the knowledge bases of many disci-
plines, are not for the mathematically fainthearted. If you are interested in conducting a meta-
analysis, several of the resources listed in the “For Furcher Reading” section at the end of chis
chapter should prove helpful.

Using Statistical Software Packages

2y

-

Earlier in the chapter, we mentioned that general-purpose spreadsheet programs can be used to
describe and analyze sets of quantitative data. However, many spreadsheecs are limited in their
statistical analysis capabilities. As an alternative, you may want to consider using one of the
several statistical software packages now widely available for use on personal compurers {(e.g.,
SPSS, SAS, SYSTAT, Minitab, Statistica). Such packages have several advantages:

B Increased user-friendliness.  As statistical software programs become increasingly pow-
erful, they also become more user-friendly. In most cases, the programs are logical and
easy to follow, and resules are presented in easy-to-read table format. Selection of the
proper statistics and interpretation of the results, however, are still left to the
researcher.

B Range of available statistic, Many of these programs include a wide variery of statistical
procedures, and they can easily handle large data sets, multiple variables, and missing
data points.

B Assumption teiting. A common feature of statistical software packages is to test for char-
acteristics (e.g., skewness, kurtosis) that might violate the assumptions on which a para-
metric statistical procedure is based.

W Speed of completion.  As always, a major benefit of using the computer is the speed with
which it accomplishes tasks. Even relatively simple statistical procedures might take

several hours if executed by hand; more complex atalyses are, for all practical pur-.

poses, impossible for a researcher to conduct using only paper, pencil, and a hand-held

calcularor,
M Graphics. Many statistical programs allow the researcher to summarize and display

dara in tables, pie charts, bar graphs, or ather graphics.

it b

o
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FIGURE 11.11 Hi
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Always keep in mind that the nature of the data governs the correlational procedure that is
appropriate for those data. Don't forget the cardinal rule: Look at the data! Determine their
nature, scrucinize their characteristics, and then select the correlational technique suitable for
the type of data with which you are working.

How Validity and Reliability Affect Correlation Coefficients

Beginning researchers should be aware that the extent to which one finds a statistical correlation
between two characteristics depends, in part, on how well those characteristics have been meas-
ured. Even if there really ir a correlation between two variables, a researcher won't necessacily
find one if the measurement instruments he or she uses have poor validity and reliability. For
instance, we are less likely to find a correlation berween age and reading level if the reading test
we use is neither a valid (accurace) nor reliable {consistent) measure of reading achievement.

Over the years, we authors have had many students find disappointingly fow correlation
coefficients between two variables that they hypothesized would be highly correlated. By look-
ing at the correlation coefficient alone, a researcher cannot determine the reason for a low corre-
Jation any more than he or she can determine the reason for a high one. Yet one thing is cereain:
You will find substantial corvelations between tro chavacteristics only if you can mearure both characteris-
tics with a reasonable degree of validity and reliability. We refer you back to the section “Validity and
Reliability in Measurement” in Chapter 4, where you can find strategies for determining and
enhancing both of these essential qualities of sound measurement.

A Reminder about Correlation

Whenever you find evidence of a correlation within your data, you must remember one impor-
tant point: Corvelation does not necessarily indicate causation. For example, if you find a correlation
between self-esteem and classroom achievement, you cannot necessarily conclude that students’
self-esceemn influences their achievement. Only experimental studies, such as those described in
Chapter 9, allow you to draw definitive conclusions about the extent to which one thing causes
or influences another.

Finding a correlation in a data set is equivalent to discovering a signpost. That signpost
points to the fact that two variables are associated, and it reveals the nature of the association
(positive or negative, strong or weak). It should chen lead you to wonder, What is the underly-
ing reason for the association? Bur the statistic alone will not be able to answer that question.
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In Appendix B, we show you some of the basics of one statistical software program, SPSS, and
use a small data set co illustrate some of the ways you might use ic.”

For frugal researchers—especially those whose research problems require small data sets and
relatively simple starisrical procedures (e.g., computing standard deviations, correlarion coeffi-
cients, or chi-squares)—online statistics calculacors provide another option. Two examples are
www.easycalculation.com (www.easycalculation.com/statistics/statistics.php) and GraphPad
Software’s QuickCalcs (www.graphpad.com/quickcalcs). A Google or Yahoo! search for “online
seatistics calculator” can identify other helpful websites as well.

Yet we must caution you: A computer cannot and should not do it all for you. You may be able to
perform sophisticated calculations related to dozens of statistical tests and present the results in a
variety of ways, but if you do not understand how the resulrs relate to your research problem, or if
you cannot otherwise make logical, theoretical, or pragmatic sense of what your analyses have
revealed, then all your efforts have been for naught. Powerful staristical software programs make it
all too easy to conduct studies so large and complex that the researcher loses sight of the initial
research question. In the words of Krathwohl (1993), the researcher eventually behaves “like 2
worker in a laboratory handling radioactive material, . . . manipulating mechanical hands by
remote control from a room outside a sealed dara container. With no sense of the data, there is little
basis for suspecting an absurd result, and we are at the mercy of the computer printout” (p. 608).

Ultimately yox must be in control of your analyses; you must know what calculations are
being performed and why. Only by having an intimate knowledge of the data can you derive
true meaning from the seatistics computed and nse them to address your research problem.

Interpreting the Data

To the novice researcher, statistics can be like the voice of a bevy of sirens. For those who have
never studied or have forgotten the works of Homer, the Odyssey describes the perilous straits
between Scylla and Charybdis. On these treacherous rocks resided a group of Sirens—svelte
maidens who, with enticing songs, lured sailors in their direction aid, by so doing, caused ships
to drift and founder on the jagged shores.

For many beginning researchers, statistics hold a similar appeal. Subjecting data to elegant
statistical routines may lure novice researchers into thinking they have made a substantial dis-
covery, when in fact they have only calculated a few numbers. Behind every statistic lies a sizable
body of data; the statistic may summarize these data in a particular way, but it cannot capture all
the nuances of the data. The entite body of data collected—not any single statistic calculaced—
is what ultimately must be used to resolve the research problem. There is no substitute for the
task the researcher ultimately faces: to discover rhe meaning of the data and its relevance to the
research problem. Any statistical process you may employ is only ancillary to this central quest.

At the beginning of the chapter, we presented a hypothetical dara set for 11 school children
and discovered thac the 5 gitls in the sample had higher reading achievement test scores than the
6 boys. Shortly thereafter, we presented actual dara about growth marks on the shells of the
chambered nautilus. Perhaps these examples piqued your curiosity. For instance, perhaps you
wondered about questions such as these:

B Why were all of the girls” scores higher than those of the boys?

8 Why were the intervals between each of the scores equidistant for both boys and girls?

# What caused the nautilus to record a growth mark each day of the lunar month?

B Is che relacionship between the forming of the partitions and the lunar cycle singular to
the nautilus, or are there other similar occurrences in nature?

7At the {nseructor’s request, this book can be packaged with the Scudent Version of SPSS at a discoune: the CD for che sofeware
provides versions for boch Windows and Macintosh users. Please conrace your focal Pearson representative if you are an instruc-
tor who s inrerested in secting up such a package for your studencs.
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Knowledge springs from questions like these. But we must be careful not to make snap judg-
ments about the dara we have collected. It is all too easy to draw hasty and unwarranted conclu-
sions. Even the most thorough research effort can go astray at the point of drawing conclusions
from the dara.

For example, from our study of 11 children and their reading achievement scores, we mighte
conclude thar girls read better chan boys. But if we do so, we are not thinking carefully aboue
the data. Reading is a complex and multifaceted skill. The data do not say that gicls read better
than boys. The data 4o say that, on a particular test given on a particular day to a particular
group of 11 children, all gitls’ scores were higher than all boys’ scores and that, for both boys
and girls, the individual scores differed by intervals of 4. The apparent excellence of the gitls
over the boys was limited to test performance in those reading skills that were specifically meas-
ured by che test. Honesty and precision dicrate that all conditions in the situation be considered
and that we make generalizations only in strict accordance with the data. On the following day,
the same test given to another 11 children might yield different results.

In general, interpreting the data means several things:

1. Relating the findings vo the original vesearch problem and to the specific vesearch questions and
bypotheses.  Researchers must eventually come full circle to their starting point—why
they conducted a research study in the first place and what they hoped to discover—
and relate cheir results to their initial concerns and guescions.

2. Relating the findings to pre-existing litevature, concepts, theories, and vesearch stadies. To be
useful, research findings must in some way be connected to the larger picture—to what
people already know or believe about the topic in question. Perhaps the new findings
confirm a current theoretical perspective, perhaps they cast doubt on common “knowl-
edge,” or perhaps they simply raise pew questions that must be addressed before
humankind can truly understand the phenomenon in question.

3. Determining whether the findings have practical significance as well as statistical
significance.  Statistical significance is one thing; practical significance—whether
findings are actually useful—is something else altogether. For example, let’s return to
that new medication for lowering blood cholesterol level mentioned earlier in the chap-
ter. Perhaps we randomly assign a large sample of individuals to one of two groups; one
is given the medication, and the other is given a placebo. At the end of the study, we
measure cholesterol levels for the two groups and chen conduct a z-test to compare the
group means. If our sample size is quire lacge, the standard etror of the mean will be
very small, and we may therefore find that even a minor difference in the cholesterol
levels of the two groups is statistically significant. Ts the difference practically signifi-
cant as well? That is, do the benefics of the medication outweigh its costs and any
unpleasant side effects? A calculation of effect size—how different the cholesterol levels
are for the treatment and control groups relative to the standard deviation for one ot
both groups—can certainly help us as we struggle with chis issue. But ulcimately a
statistical test cannot, in and of itself, answer the guestion. Only the human mind—the
researcher, practitioners in the field of medicine, and so on—can answer it.

4. Identifying limitations of the stwdy.  Finally, interpreting the data involves outlining the
weaknesses of the study that yielded them. No research study can be perfect, and ics
imperfections inevitably cast at least a hint of doubt on its findings. Good researchers
know—and also report—the weaknesses along with the strengths of their research.

A Sample Dissertation

To illustrate this final step in che research process—interprecation of the data—we present
excerpts from Kimberly Mitchell's doctoral dissertacion in psychology conducted at the
University of Rhode Island (Mitchell, 1998). “The researcher was interested in identifying pos-
sible causal factors leading to eating disordets and substance abuse, and she hypothesized that |
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family dynamics and child abuse might be among those factors. She drew on three theoretical
perspectives thar potentially had relevance to her research question: problem behavior theory,
social cognitive theory, and the theory of cognitive adaptation. She administered several surveys
to a large sample of undergraduate students and obtained a large body of correlational data about
the students’ childhoods, eating habirs, drug use, and so on. She then used strucural equation
modeling (described briefly in Table 11.5) as a means of revealing possible—we must emphasize
the word possible-—¢ause-and-effect relationships in her dara set.

The dissertation refers to several psychological theories and concepts with which many of
our readers may not be familiar. Nevertheless, as you read the excerpts, you should be able to see
how che author frequently moves back and forth between her results and the broader theoretical
framework. We pick up the dissertation at the point where Mitchell begins to summarize and
interpret her results.

DISCUSSION Comments

Summary of Resulis and Integration

The anuthor tapitalizes the namer of the

The purpose of this study was to integrate several theories that are beneficial for three theories. More often, researchers nse

understandiing healih-risk behaviors. Problem Behavior Theory (Jessor, 1987), Social Lowercase letters when referring to
particular theoretical perspeciives. Either

Cognitive Theory. . .. (Bandura, 1977a), and the Theory of Cognitive Adapiation lor, .

d - ) fyoreeg P (T approach is acceptable as long ar the author
1983) are similar in that they alf pose a cognitive component within the individual that ir consistent.
is crucial fo overcome the potential negative consequences of Iifte stressors. . . . This '

study supports these three theorias, as well as previous research in the field. it extends Notice how the author beging with a “grand
conclusion” of sorts, which she supports in

the research by linking these theories into a single comprehensible framework for )
suehrequeent paragraphs. She alro explains

understanding the link between the childhood siressors of sexual abuse and negative bows she has expanded on existing theories
family functioning and adult substance misuse of aicohol, illicit drugs, and ediing. by integrating them to explain the phenome-
A series of structural equation models reveaied the powerful impact individuals’ #non she bas studied.

perceptions of their confidence and their interactions with their environment play on
healifrisk behavior. The first three models examined various ways childhood stressors The “models” she vefers to bere ave
wmultivariable flowcharts that veflect how
soime variables may influence other
variables, perhaps divectly or perhaps

(sexual abuse and family functioning) could predict curent health-isk behaviors
{ulcohol use, illicit drug use, and binge eating). Examination of the first three models

(Fuli, Direct, and Mediational) and chisquare difference tests revealed that the media- indirectly through additional, mediator
tors (self-efficacy, life satisfaction, and coping) are extremely important in predicting variables,

healttrisk behaviors. This [finding] supports Jessor's (1987) theory that problem

behavior is the result of the interaction of the personality system, percelved environ- Self-efficacy refers to people’s confidence in

their ability to perform a task (e.g., vesist
the temptation to abuse aleobol) sicessfully.
It is a central concept in Bandura's social
and the behavioral system by the outcome constructs. . . . [Tihe socialization an indk- cognitive theory, one the three theoretical
vidual encounters throughout childhood through interactions with family members Jrameworks on which the anthor bases her
Sty

ment, and the behavioral system. The personality system is measured by the cognitive

mediator constructs; the perceived environment by the family functioning construct:

appears fo influence both how the individual perceives the self and the environment

around him/her. These factors seem to propel individuals to behave in ways that may

or may not be risky for their health.




306 Chapter 11 Strategies for Analyzing Quantitative Data

Furthermore, Jessor (1987) suggests that problem behaviors in which adolescents
engage are interrslated and co-vary. Donovan and Jessor (1985) suggest that diverse
problern behavior, such as alcoho! abuse, risky sexual behavior, and drug use consti-
tute a single behavioral syndrome. The current study supports this notion. All of the
structural models revealed a positive relationship between alcohol and drug use, as
well as a positive relationship between drug use and binge eating. Although the rela-
tionship between alcohol use and binge eoﬂrig wals not found to be significant, they
are indirectly related through drug use. Such relationships support the idea that these
health-risk behaviors constitute a single behavioral syndrome. Future research with a
longitudinal design is needed to see if there is a linear trend among these variables. ...

[The authar continues with a discussion of more specific aspects of her findings
and their relevance o the three theorefical frameworks. We pick up her discussion

again when she summarizes her conclusions. ]

Summary of Conclusions

There are several conclusions that can be drawn from this study. First, in support of
Problem Behavior Theory (Jessor, 1987}, heatth~isk behaviors may ke part of a single
behavioral syndrome, The consistent relationships found throughout the models
between alcohal use and drug use, as well as {between] drug use and binge eating,
reveal the presence of a higher order behaviorg! syndrome.=

Second, there is a complex relationship between child sexual abuse and farmily
functioning in terms of their ability to predict life satisfaction. coping. and self-efficacy.
While child sexual abuse was found to significantly predict coping and life satisfaction,
the inclusion of family functioning into the model made these paths disappear. The
initial finding indicates a confounding ofichild sexual abuse and family functioning
rather than sexual abuse itself. Furthermore, the constant relationship between child
sexual gbuse and family functioning shows that, although child sexual abuse does
not directty predict the mediator constructs. it plays a role in the prediction indirectly.

Third, family functioning and cogritive mediators inferact in specific and consistent
ways to determine health-risk behaviors. Those students with high levels of family func-
fioning are likely to have high life satisfaction, more effective coping strategies, and
higher self-efficacy for alcohol use, drug use, and eating. in turn, these cognitive fac-
fors inferact fo predict health+isk behavior.

[The author continues with additional conclusions, and then tums to the fimifations

of her study.]

Study Limitations

The present study offers several important findings to the literature. Yet, there are
some limitations to the study as well. First, the design was cross-sectional rather than
IongiTudinol..Structurol equation modeling is a multivariate technique that is well uti-
lized with longitudinal data (Maruyama. 1998). By incorporating longitudinal dc:fé: into
the overall design. one can begin o establish causdlity in the results. The use of cross-

sactional data with this sampie does not allow the researcher to make causal state-

ments about the findings. For example, the data cannot telt us whether selt-eficacy for

Notice how the anthor continually comnects
ber findings with the theoretical frame-
works she is nsing.

Here the anthor points ont both what she
has found and what she bas not found.

Alrbongh the auihor has previously
presented each of her conclusions, she
summmarizes them all heve, Such @ jummary
is typical of lengthy research reports. It is
quite belpful to readers, who might easily
lose track of some important conclurions as
they read earlier portions of a report.

The anthor makes the point that two of hey
independent (predicior) variables, child
sexcral abuse and family functivning, are
bighly intervelated. Their strong correlation
is reflected in the models identified through
ber structuval equation modeling procedures.

The anthor’s use of the term cross-seccional
is somewhat different from ony use of it in
Chapier 8. She simply means that she col-
lected all data from her sample ai one time,
rather than follmwing the sample over a
lengthy period and collecting data at two or
miore times. As the author states, a longits
dinal design would have bester enabled
ber to identify ingportant factors that
preceded—and so may bave had a camsal
effect on—other facters.
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atcehol use comes before actual dlcohol use or vice versa. Furthermore, the study
asks the participant to answer a portion of the survey retrospectively, such as [is true
for] the child sexual abuse and famlly functioning items. This brings up problems with
how reliable the responses are due to the length of tims that has passed between the
incident(s) in quastion and the time of the study. . . ..

A second limitation to this study is the nature of the sample itself, Although the sam-
ple size is excellent (n=449), there were disproportionate numbers of men and women
(125 and 344, respectively). Furthermore, the sample was extremely homogeneous
(87% White; 91% freshman or sophomore; 74% with family income over $35,000: and
73% Catholic or Protestant). This degree of similarity among participants limits the gen-
eralizability of the study resuits to other populations. Yet the results are still important
because this is a population at high risk for alcohol use, drug use, and bulimic-related
binge eating.

Another limitation 1o this study is the tack of response to the probing sexual
abuse guestions. Approximately one half of the 91 students who reported sexual
abuse did net respond to the in-depth questions regarding the abuse
experience(s) (e.g.. degree of trust with perpetrator, frequency of abuse). This couid
be due to the nature of the survey itself or [fo] the environment in which students
fifed out the survey. In terms of the nature of the survey. once students responded fo
the overall sexual abuse questions geared to determine whether they were abuse
survivors or not, they were instructed fo skip the next five questions if their responses
to the previous seven questions were all *Never” it is possible that students who did
not respond “Never” to the seven questions skipped the follow-up questions anyway
in a desire to finish the survey quickly. The second possibility 1o the lack of response
is the environment in which students fook the survey. Students were asked fo sign up
for ¢ designated one-hour fime slot fo participate in the study. It is highly likely that
students signed up for the saume time slots as their friends in class and subsequently
sat next to each other while filling out the survey. Due 1o the close proximity and the
sensitive nature of the questions, some sexual gbuse survivors may not have wanted
fo fill out additional questions in fear that thelr friends might see. Better procedures
in the future would be to have all students fill out all questions, whether they are
abuse survivors or not, and/or to allow them to have more privacy while taking the
survey.. ...

Afinal limitafion of the study is the use of self-report dota only. Self-report data may
be fraught with problems derfived from mernory restrictions and perception differences.
A more comprehensive design would include actual physical ways to measure the
outcome variables. For example, the researcher could have sirengthened the design
by taking blood or urine samples to examine drug use.The problem here is that [the
latter] method requires a greaf deal of time and money to undertake.

[The researcher concludes the discussion by talking about potential implications of

her findings for clinical pracfice and social policy ]

NOTE: Excerpt is from Childbood Sexual Abuse and Family Funcrioning Linked with Eating and Substance Misuse:
Mediated Structural Models (pp. 92-94, 114-119) by K. J. Mitchell, 1598, unpublished doctoral dissertation,
University of Rhode Island, Kingscon. Repeinted with permission.
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The anthor points ont a problen: with aring
surveys to learn abont people’s prior life
experiences: Human memory ir not always
aecurate. Her use of the word reliable bere
refers to accavacy and dependability (e,
varlidity) of the results, rather than to reli-
ability ac we have previonsly defined the

term.

The anthor explains ways in which her
sample was not completely representative of
the overall population of older adolescents
and young adwults but also makes a good
case for the value of tudying this sample.

The awthor identifies gaps (missing date)
in ber survey data and suggeris plausible
explanations for them. At the end of the
paragraph, the offers suggestions for how

Jutnve vesearch night mininize swch gaps.

By perceprion differences, #he anthor i
presumably referving to bow different
participants nuxy bave interpreted their
prior experiences and/or items on the sirvey.
An additional weakness of self-report data
is that some participants may have
intentionally misrepresented their prior
experiences aadior curvent bebaviors,
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PRACTICAL APPLICATION Analyzing Data in a Quantitative Study

You can gain a clearer understanding of statistics and statistical procedures by reading about
them in research reports and using them in actual pracrice. If your research projece involves
quantitative data, the following checklist can help you clarify which statistical analyses might
be most appropriate for your situarion. '

¢/ CHECKLIST
QUes’rions to Consider When Choosing a Statistical Procedure

"CHARACTERISTICS OF THE DATA

1. Arethedara continuous or __-__discrete?
- 2. What scale do the data reflect? Are they nominal, ordinal,
.interval, or ratio?

——— 3. What do you want to do with the data?
o Calculate cenrral teﬁd_e_ncy? If so, with which measure?
C'alcu.ﬁate variability? If so, with which measure?
Calculate correlﬁtioﬁ? If so, with which measure?

Estimare population parameters? If so, which ones?

Test a nuli hypothesis? If so, at what confidence level?

“Other? (specify)
__. 4. State your rationale for processing the data as you have just indicated you intend to do.

INTERPRETATION OF THE DATA

°S. After you have treared the data statistically to analyze cheir characreristics, whar will

you then have?.

6. From a research standpoint, what will your interpretation of the data consist of?
How will the statistical analyses help you solve any past of your research problem?

. What remains to be done before your problem (or any one of its subproblems) can

be resolved?

—— - 8. What is your plan for carrying out this further interpretation of the data?
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