Chemy 102 _ Summer 2012-2013 _ Quiz # 3 Name ID Sec
Q1. (2 marks) The following data are for the reaction $A \rightarrow B$
Concentration (M) Rate (mol/L·s) 0.300 1.72 0.238 1.53 The order of reaction with respect to A is
Q2. (2 marks) Concentration-time relation for first-order reaction $A \rightarrow$ products is given by
$\ln\frac{[A]_{o}}{[A]} = kt$
a) What is $\frac{[A]_0}{[A]}$ after 42 s when $k = 0.56 \text{ min}^{-1}$?
b) What is $\frac{[A]_0}{[A]}$ when 60% of A has reacted? $2 \cdot 5$
Q3. (2 marks) The following mechanism is proposed for the reaction $A + B \rightarrow C$
$A + D \xrightarrow{k_1} E$ fast
$E + B \xrightarrow{k_2} C + D$ slow
a) The intermediate is
b) The catalyst is
c) The overall rate of reaction $\approx k_2(E)(B)$
d) Could the rate of reaction be checked experimentally?\
 Q4. T or F (2 marks) a) Every collision leads to a reaction. () b) Collisions between molecules lead to a reaction regardless the orientation of the molecules with respect to each other. () c) For a reaction to take place, the total kinetic energy of the reacting molecules must exceeds the activation energy of the reaction. () d) Increasing the temperature speeds up the rate of reaction by lowing the activation energy. ()