Chemy 102 – LAB QUIZZES

Exp. 1, Quiz # 1

1

T or F

- a) If heat is absorbed then the reaction is endothermic. [
- **b**) The enthalpy change is the heat change of a reaction at a constant pressure. []
- c) In calculation of this experiment it is assumed that there is no heat released to the atmosphere. []
- d) The heat absorbed by the coffee cup is considered in the calculation of Δ H in this experiment. []
- e) The device used to measure the heat change of reaction is called a calorimeter. []
- f) 25.0 ml of solution ≈ 25.0 ml of water because the solution of Zn in CuSO₄ is dilute. []
- g) You must weigh exactly 3.0 g of Zn. [
- **h**) You may measure 25.0 ml of CuSO₄ using a graduated cylinder. []

1

1

- i) If $\Delta T = 40^{\circ}$ C then ΔT in Kelvin = 40 + 273.15 [
- **j**) You will plot temperature versus time in this experiment. []

Exp. 2, Quiz # 2A

<u>Q1</u> What is the expression of K_a for the weak acid HCN ?

<u>Q2</u>

Which of the following is/are correct for the dissociation of the weak acid HF?

a) $[H^+] > [F^-]$	b) $[H^+] < [F^-]$	c) $[H^+] = [F^-]$
d) $K_a \times [HF] = [H^+] \times [F^-]$	e) $pK_a = \log K_a$	

<u>Q3</u>

In acid-base titration, the point at which the added base reacts with all the acid present is called ______

<u>Q4</u>

30.0 ml of 0.100 M of NaOH is required to completely react with 15.0 ml of HF . What is the molarity of HF?

<u>Q5</u> T or F

- **a**) $pH = -\log [H^+]$. []
- **b**) At half equivalence point pH = $\frac{1}{2}$ pK_a. []
- c) In this experiment you will plot pH of solution versus volume of base added. []
- **d**) You will need an indicator to detect the end point during the titration of this experiment. []

Exp. 2, Quiz # 2B

<u>Q1</u>

In acid-base titration, the point at which the added base reacts with half of the acid present is called ______

<u>Q2</u>

Which of the following is/are correct with regard to the equivalence point of an acid-base titration?

a) $pK_a = \log K_a$ **b)** $pH = pK_a$ **c)** $pH = \frac{1}{2} pK_a$ **d)** amount of base added reacts with half of the acid. **e)** none of the above.

<u>Q3</u>

What is the expression of K_a for the weak acid HNO₂?

<u>Q4</u>

In this experiment you will plot pH of solution versus _____

<u>Q5</u>

15.0 ml of 0.100 M of NaOH is required to completely react with 30.0 ml of HNO_2 . What is the molarity of HNO_2 ?

<u>Q6</u> T or F

- **a**) $pH = \log [H^+]$. [
- **b**) in HF solution, $[H^+] > [F^-]$. []

]

c) You will need an indicator to detect the end point for the titration of this experiment. []

Exp. 3, Quiz # 3A

<u>Q1</u>

List the three types of acid-base titration reactions to be studied in this experiment.

- a)
- b)
- c)

<u>Q2</u>

Consider the neutralization reaction between HClO₂ (weak acid) and KOH.

- **a**) What is the net ionic equation for the reaction?
- **b**) Is the solution at the equivalence point acid, basic, or neutral? Explain using a proper equation.

<u>Q3</u> T or F

- a) The pH at the equivalence point for the titration of strong acid with weak base is less than 7.
- **b**) An indicator is a weak acid or base that has different colors in its nonionized (HIn) and ionized (In⁻) forms.
- c) A suitable indicator is the one that changes color at the equivalence point of titration. [1
- d) All indicators change color at the same pH. [1

Exp. 3, Quiz # 3B

Q1.	(2 marks)
What are the two main objectives of this experiment?	
O2.	(4 marks)

Consider the titration of the weak base NH₃ with HI.

- a) Write the net ionic equation for the neutralization reaction.
- **b**) Is the solution at the end point acidic, basic or neutral? (show your answer by a proper equation)

Q3.

T or F

- **a.** An indicator can be a weak organic base.
- b. An indicator has different colors in ionized and nonionized forms of different pH. [
- **c.** The end point of an indicator occurs at specific pH. 1
- **d.** We choose an indicator whose end point lies on the steep part of the titration curve. [1

Exp. 4, Quiz # 4A

Q1.

(2 marks)

Which of the following ions will undergo hydrolysis reaction? [*circle the correct answer*(*s*)]

- I^- , Ca^{2+} , ClO_2^- , Fe^{3+} , CN^- , Al^{3+}
- **Q2.** Write a hydrolysis reaction for SO_3^{2-} (2 marks)
- **Q3.** Write a hydrolysis reaction for NH_4^+ (2 marks)

(4 marks)

1

Q4.

(2.5 marks)Classify aqueous solution of the following compounds as neutral, acidic, or basic.

KClO ₄	 AgCl	
CuBr ₂	 Na ₂ CO ₃	
$Ba(NO_2)_2$		

Q5.		Т	or	F		
	~		1	66	1	. •

- (1.5 marks) a) A buffer solution resist large changes in pH upon the addition of any amounts of strong bases or acids. [1
- b) A buffer solution resist changes in pH upon the addition of strong bases because it reacts with the added OH⁻ from the base.
- c) From the pH of a aqueous solution you can calculate $[H^{\dagger}]$ and from that you can calculate [OH]. [1

Exp. 4, Quiz # 4B

Q1.	(2 marks)
Which of the following ions will undergo hydrolysis reaction?	
[circle the correct answer(s)]	
Ni^{2+} , $C_2H_3O_2^-$, Br^- , Ba^{2+} , SO_3^{2-} , Fe^{3+}	
Q2. Write a hydrolysis reaction for NH_4^+	(2 marks)

Q3. Write a hydrolysis reaction for ClO_2^{-1} (2 marks)

Q4.

(2.5 marks)

Classify aqueous solution of the following compounds as neutral, acidic, or basic.

Na_2CO_3	 BaCN	
CuBr ₂	 NaNO ₃	
NH ₄ I		

Q5.

In an aqueous solution at $25 \,^{\circ}\text{C}$, $[\text{H}^+] \times [\text{OH}^-] =$

Q6. T or F

- a) A buffer solution resist large changes in pH upon the addition of any amounts of strong bases or acids. [1
- b) A buffer solution resist changes in pH upon the addition of strong acid because it reacts with the added H^+ from the base. 1

4

(0.5 mark)

(1 mark)

Exp. 5, Quiz # 5A

<u>Q1</u>

What is meant by a sparingly soluble salt?

- **<u>Q2</u>** consider a saturated solution of Ag_2CrO_4 .
 - **a**) K_{sp} for Ag₂CrO₄ =
 - **b**) If $[Ag^+] = 0.010$ M, what is the value of K_{sp} for Ag_2CrO_4 ?
 - c) The solubility of $Ag_2CrO_4 =$ _____M

<u>Q3.</u>

When you first filter the saturated solution of $Ca(OH)_2$ in this experiment, why do you run the first few milliliters to waste?

<u>Q4.</u>

What is the use of standardized hydrochloric acid in this experiment?

Exp. 5, Quiz # 5B

<u>Q1</u>

What is meant by a sparingly soluble salt?

Q2 consider a saturated solution of Ag_2CrO_4 .

- **a**) K_{sp} for Ag₂CrO₄ =
- **b**) If $[Ag^+] = 0.012$ M, what is the value of K_{sp} for Ag_2CrO_4 ?
- c) The solubility of $Ag_2CrO_4 =$ _____M

<u>Q3.</u>

When you first filter the saturated solution of $Ca(OH)_2$ in this experiment, why do you run the first few milliliters to waste?

<u>Q4.</u>

What is the use of standardized hydrochloric acid in this experiment?

Exp. 6, Quiz # 6A

In this experiment we will study the kinetic of the reaction between iodine and acetone:

$$\begin{array}{c} & \bigcup \\ H_{3}C \underbrace{\qquad} C \underbrace{\qquad} CH_{3} (\mathit{aq}) + I_{2} (\mathit{aq}) & \underbrace{\qquad} H^{+} & H_{3}C \underbrace{\qquad} C \underbrace{\qquad} CH_{2}I (\mathit{aq}) + I^{-} (\mathit{aq}) \end{array}$$

Two reaction mixtures are shown in the following table:

	Volume / mL					
Mixture	4.0 M acetone	1.0 <i>M</i> HCl	0.0050 <i>M</i> I ₂	H ₂ O		
1	10	10	10	20		
2	20	10	10	10		

- a) Which reactant is/are limiting and which is/are excess?
- **b**) Which reactant has a color?
- c) What is the concentration of acetone *in* the reaction mixture 1?
- **d**) What is the concentration of I_2 *in* the reaction mixture 1?
- e) From the order of reaction with respect to which reactant can be calculated from the ratio of rate of reaction mixture 1 to rate of reaction mixture 2?
- **f**) Why a reaction of a certain mixture need to be carried out at different temperature?
- g) In this experiment you will plot ______ vs _____ and from the slope you will obtain ______
- h) T or F
 - i. The concentration of I_2 will remain approximately constant during the reaction of mixture **1**. []
 - **ii.** The concentration of acetone will remain approximately constant during the reaction of mixture **2**. []
 - iii. The concentration of H^+ will remain approximately constant during the reaction of mixture **2**. []

Exp. 6, Quiz # 6B

In this experiment we will study the kinetic of the reaction between iodine and acetone:

$$H_{3}C \xrightarrow{\qquad C} CH_{3} (aq) + I_{2} (aq) \xrightarrow{\qquad H^{+}} H_{3}C \xrightarrow{\qquad C} CH_{2}I (aq) + I^{-} (aq)$$

Two reaction mixtures are shown in the table below.

	Volume / mL				
Mixture	4.0 <i>M</i> 1.0 <i>M</i> acetone HCl		0.0050 <i>M</i> I ₂	H ₂ O	
1	15	10	10	25	
2	25	10	10	15	

- 1) Which reactant is limiting?
- 2) Which reactant has a color?
- 3) What is the concentration of acetone *in* the reaction mixture 1?
- 4) What is the concentration of I_2 *in* the reaction mixture 2?

- 5) From $\left(\frac{Rate of reaction mixture 1}{Rate of reaction mixture 2}\right)$ you can calculate the order of reaction with respect to
- 6) Why a reaction of a certain mixture need to be carried out at different temperatures?
- 7) In this experiment you will plot ______ vs _____, and the slope = ______

8) T or F

- a) The concentration of I_2 will remain approximately constant during the reaction of mixture 1. []
- **b**) The concentration of acetone will remain approximately constant during the reaction of mixture 2. []
- c) If reaction of mixture 2 takes 3 minutes, then it is expected that the rate of reaction will be approximately constant during these 3 minutes. []

Exp. 8, Quiz # 7

Q1. (3 marks) This experiment is divided into 2 parts, what are they? A) B)

Q2.

Potassium permanganate reacts with oxalate ions in acidic solution as follows:

 $5C_{2}O_{4}^{2^{-}}(aq) + 2MnO_{4}^{-}(aq) + 16H^{+}(aq) \rightarrow 10CO_{2}(g) + 8H_{2}O(l) + 2Mn^{2^{+}}(aq)$

- **a)** What is the color of the solution before the end point? (1 mark)
- **b**) What is the color of the solution at the end point? And what is it due to? (2 marks)
- c) What is the concentration of $KMnO_4$ if 12.0 mL of it is required to neutralize 6.70×10^{-4} mol of $Na_2C_2O_4$? (3 marks)
- Q3. (1 mark) Why is it necessary to heat the reaction mixture in this experiment?