University of Bahrain, Department of Chemistry

Chemy 102, First Semester 2013-2014
$1^{\text {st }}$ hour examination
Examiners: Ali Hussain, Ahmad Saad, Fadheela, and Reema Balachandra
Time : 75 min
Name
ID \qquad Sec
The relative energies of molecular orbitals:
$H_{2}-N_{2}$:

$$
\sigma_{1 \mathrm{~s}}<\sigma_{1 \mathrm{~s}}^{*}<\sigma_{2 \mathrm{~s}}<\sigma^{*}{ }_{2 \mathrm{~s}}<\pi_{2 \mathrm{p}_{\mathrm{y}}}=\pi_{2 \mathrm{p}_{\mathrm{z}}}<\sigma_{2 \mathrm{p}_{\mathrm{x}}}<\pi^{*} \mathrm{pp}_{\mathrm{y}}=\pi^{*}{ }_{2 p_{\mathrm{z}}}<\sigma^{*} 2 \mathrm{p}_{\mathrm{x}}
$$

O_{2} and F_{2} :

$$
\sigma_{1 \mathrm{~s}}<\sigma_{1 \mathrm{~s}}^{*}<\sigma_{2 \mathrm{~s}}<\sigma_{2 \mathrm{~s}}^{*}<\sigma_{2 p_{\mathrm{x}}}<\pi_{2 \mathrm{p}_{\mathrm{y}}}=\pi_{2 \mathrm{p}_{\mathrm{z}}}<\pi^{*} \mathrm{p}_{\mathrm{y}}=\pi^{*} 2 \mathrm{p}_{\mathrm{z}}<\sigma^{*} 2 \mathrm{p}_{\mathrm{x}}
$$

Specific heat of water $=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$

Q1.

(6 marks)
a) Write molecular orbital configuration for $\mathrm{N}_{2}{ }^{-}$.

$$
\begin{aligned}
& \sigma^{*}{ }_{1 \mathrm{~s}}- \\
& \sigma_{1 \mathrm{~s}}-
\end{aligned}
$$

b) What is the bond order in $\mathrm{N}_{2}{ }^{-}$? 2.5
c) Is $\mathrm{N}_{2}{ }^{-}$paramagnetic or diamagnetic? paramagnetic
d) Which one is more stable $\mathrm{N}_{2}{ }^{-}$or $\mathrm{N}_{2} ? \mathrm{~N}_{2}$
e) Which has the shortest bond length $\mathrm{N}_{2}{ }^{-}$or N_{2} ? N_{2}

Q2.
Draw Lewis structure for $\mathrm{PCl}_{4}{ }^{+}$.

4 single bonds and no lone pairs on P

Q3.
(4 marks)
POCl_{3} has the skeleton structure

a) Write a Lewis structure following the octet rule.
b) Write a Lewis structure in which all the formal charges are zero.

4 single bonds and no lone pairs on P
3single $\mathrm{P}-\mathrm{Cl}$ bonds \& double bond between P and O, and no lone pairs on P

Q4.
(2 marks)

Draw all resonance structures for

> Q5.

Consider the following Lewis structures

(a)

(c)

: 0 :
(b)

(d)
i) What is the molecular geometry of (a)? bent
ii) What is the molecular geometry of (c)? square pyramid
iii) What is the molecular geometry around N atom in (d)? trigonal planar
iv) What is/are the bond angle(s) in (c)? ~ 90 and 180°
v) What is/are the bond angle(s) in (d)? ~ 109 and 120°
vi) What is the formal charge on N atom in (a)? +1
vii) What is the formal charge on Cl atom in (b)? +3
viii) What is the hybridization on I in (c)? $\mathrm{sp}^{3} \mathrm{~d}^{2}$
ix) What is the hybridization on central O in (d)? sp^{3}
x) What are the polar structures? a , b, c, d
xi) The octet rule is not followed in a, b, c
xii) How many π bonds are there in (d)? 2
xiii) How many σ bonds are there in (a)? 2

Q6.

$\mathrm{NH}_{4} \mathrm{NO}_{3}$ absorbs 330 J of heat per gram dissolved in water. In a coffee-cup calorimeter, 4.00 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is dissolved in $75.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$. Assuming that all the heat is lost from the water ($\mathrm{c}=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$), what is the temperature change of the water? (show your work)

Heat released by $4.00 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}=4.00 \mathrm{~g} \times(330 \mathrm{~J} / \mathrm{g})=1320 \mathrm{~J}$
$=$ heat released by water $=\mathrm{m} \times \mathrm{c} \times \Delta \mathrm{T}$
$\therefore \Delta \mathrm{T}=1320 \mathrm{~J} /\left(75.0 \mathrm{~g} \times 4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)=4.21^{\circ} \mathrm{C}$

Q7.

(3 marks)
When 2.00 g of salicylic acid, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$, burns in a bomb calorimeter, the temperature rises by $10.6^{\circ} \mathrm{C}$. The temperature in the bomb calorimeter increases by $2.68{ }^{\circ} \mathrm{C}$ when the calorimeter absorbs 9.37 kJ . How much heat is given off when one mole of salicylic acid is burned? (show your work)
$\mathrm{C}_{\mathrm{cal}}=q / \Delta \mathrm{T}=9.37 \mathrm{~kJ} / 2.68{ }^{\circ} \mathrm{C}=3.50 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
$q_{\text {reaction }}($ per 2.00 g of salicylic acid $)=-q_{\mathrm{cal}}=-\mathrm{C}_{\mathrm{cal}} \times \Delta \mathrm{T}$

$$
\begin{aligned}
= & -3.50 \mathrm{~kJ} /{ }^{\circ} \mathrm{C} \times 10.6^{\circ} \mathrm{C}= \\
& -37.1 \mathrm{~kJ}
\end{aligned}
$$

$q_{\text {reaction }}($ per mol of salicylic acid $)=-(37.1 \mathrm{~kJ} / 2.00 \mathrm{~g}) \times(138.1 \mathrm{~g} / \mathrm{mol})$

$$
=-2.56 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}
$$

