University of Bahrain, Department of Chemistry Chemy 102, First Semester 2013-2014 2nd hour examination

Examiners: Ali Hussain, Ahmad Saad, Fadheela Al-Salman, and Reema Balachandra Time : 75 min

Name		IDSec	
	Concentration-Time		
<u>Order</u>	<u>Relation</u>		
0	$[\mathbf{A}] = [\mathbf{A}]_o - kt$	Arrhenius equation: $k = Ae^{-Ea/RT}$	Г
1	$\ln \frac{[A]_o}{[A]} = kt$	$R = 8.314 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$	
2	$\frac{1}{[A]} = \frac{1}{[A]_o} + kt$		

Q1.

(1 mark)

What volume of benzene (C_6H_6 , density = 0.88 g/mL, molar mass = 78.11 g/mol) is required to produce 1.5×10^3 kJ of heat according to the following reaction?

 $2 C_6 H_6(l) + 15 O_2(g) \rightarrow 12 CO_2(g) + 6 H_2O(g) \Delta H^\circ = -6278 \text{ kJ}$

A) 75 mL B) 37 mL C) 21 mL D) 71 mL E) 42 mL

Q2.

(1 mark)

(1 mark)

Choose the reaction that illustrates $\Delta H^{\circ}f$ for Ca(NO₃)₂. <u>A)</u> Ca(s) + N₂(g) + 3O₂(g) \rightarrow Ca(NO₃)₂(s) B) $\operatorname{Ca}^{2+}(\operatorname{aq}) + 2 \operatorname{NO}_{3}(\operatorname{aq}) \rightarrow \operatorname{Ca}(\operatorname{NO}_{3})_{2}(\operatorname{aq})$ C) Ca(s) + 2 N(g) + 6 O(g) \rightarrow Ca(NO₃)₂(s) D) $Ca(NO_3)_2(aq) \rightarrow Ca^{2+}(aq) + 2 NO_3(aq)$ E) Ca(NO₃)₂(s) \rightarrow Ca(s) + N₂(g) + 3O₂(g) Q3.

Using $C_{3}H_{8}(g) + 5 O_{2}(g) \rightarrow 3 CO_{2}(g) + 4 H_{2}O(g)$ $\Delta H = -2043 \text{ kJ}$ $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H = -393.5 \text{ kJ}$ $2 \operatorname{H}_{2}(g) + \operatorname{O}_{2}(g) \rightarrow 2 \operatorname{H}_{2}\operatorname{O}(g)$ $\Delta H = -483.6 \text{ kJ}$

Find ΔH for the following reaction

 $3 \text{ C}(\text{s}) + 4 \text{ H}_2(\text{g}) \rightarrow \text{C}_3\text{H}_8(\text{g})$ $\Delta \text{H} = -105 \text{ kJ}$

2

Q4.

(1 mark) Use the $\Delta H^{\circ}f$ and ΔH° information provided to calculate $\Delta H^{\circ}f$ for IF:

	$\mathrm{IF}_7(\mathrm{g}) + \mathrm{I}_2(\mathrm{g}) \rightarrow$	$IF_5(g) + 2 IF(g)$	$\Delta H^{\circ} = -89 \text{ kJ}$
<u>ΔH</u> °f	(kJ/mol)		
$IF_7(g)$	-941		
$IF_5(g)$	-840		
A) 101	l kJ/mol	B) –146 kJ/mol	C) –190 kJ/mol
<u>D) -95</u>	<u>5 kJ/mol</u>	E) 24 kJ/mol	

Q5.

Using

$H(g) + Br(g) \rightarrow HBr(g)$	$\Delta H = -368 \text{ kJ}$
$2 \operatorname{Br}_2(g) \to 4 \operatorname{Br}(g)$	$\Delta H = +386 \text{ kJ}$
$2 \operatorname{H}(g) \rightarrow \operatorname{H}_{2}(g)$	$\Delta H = -436 \text{ kJ}$

(a) Br–Br bond enthalpy = $\underline{193 \text{ kJ}}$

(b) Arrange the following bonds from weakest to strongest: H–H, Br–Br, H–Br

Br–Br	H–Br	H–H
weakest		strongest

Q6.

(1 mark)

Given w = 0, an endothermic reaction has the following.

A) + Δ H and - Δ E	B) $-\Delta H$ and $+\Delta E$
C) + Δ H and + Δ E	D) $-\Delta H$ and $-\Delta E$

Q7.

Given the balanced equation $2 O_3(g) \rightarrow 3 O_2(g)$.

If the rate of formation of O_2 is 0.694 mol/L·s, what is the rate of the loss of O₃?

<u>A) 0.463 mol/L·s</u>	B) 1.04 mol/L·s	C) 0.643 mol/L·s
D) 0.231 mol/L·s	E) 4.16 mol/L·s	

(2 marks)

(1 mark)

Q8.

(1 mark)

Consider the following balanced chemical equation:

$$H_2O_2(aq) + 3I^-(aq) + 2H^+(aq) \rightarrow I_3^-(aq) + 2H_2O(l)$$

In the first 10.0 seconds of the reaction, the concentration of I⁻ dropped from 1.000 M to 0.868 M. Calculate the average rate of this reaction in this time interval.

Rate =
$$4.40 \times 10^{-3}$$
 M/s

Q9. (2 marks) The graph below is for the reaction $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$

Determine

a) The order of reaction 1

- ^{b)} The rate constant of the reaction 0.000290 s^{-1}
- c) The initial concentration of SO_2Cl_2 0.100 M
- d) The rate of reaction when the concentration of SO_2Cl_2 is 0.0800 M. 2.32×10^{-5} M s⁻¹

Q10. The graph below is for the reaction $NO_2(g) \rightarrow NO(g) + O(g)$

Determine:

- a) The order of reaction. 2
- **b**) The rate constant of the reaction. $0.255 \text{ M}^{-1} \text{ s}^{-1}$
- c) The initial concentration of NO₂. 0.0100 M
- d) The concentration of NO₂ after 1300 s. 2.32×10^{-3} M

Q11.

(1 mark) The reaction between nitrogen dioxide and carbon monoxide is given by the following equation: $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$

The rate constant at 701 K was measured as $2.57 \text{ M}^{-1}\text{s}^{-1}$ and that at 895 K was measured as 567 $\text{M}^{-1}\text{s}^{-1}$. Find the activation energy for the reaction in kJ/mol.

$$E_a = 150 \text{ kJ/mol}$$

(2 marks)

(1 mark)

Q12.

Given the following rate law, how does the rate of reaction change if the concentration of Y is doubled?

Rate = $k [X]^2 [Y]^3$

A) The rate of reaction will increase by a factor of 9.

B) The rate of reaction will increase by a factor of 2.

 \underline{C}) the rate of reaction will increase by a factor of 8.

D) The rate of reaction will increase by a factor of 4.

E) The rate of reaction will remain unchanged.

Q13.

(1.5 marks)

The data below is for th	e reaction CO(g) +	$\operatorname{Cl}_2(g) \rightarrow$	$\text{COCl}_2(g)$
--------------------------	--------------------	--------------------------------------	--------------------

[CO] (M)	$[Cl_2](M)$	Initial Rate $(M^{-1}s^{-1})$
0.25	0.40	0.696
0.25	0.80	1.97
0.50	0.80	3.94

Determine

a) The order of reaction with respect to CO. 1

b) The order of reaction with respect to Cl_2 . 3/2

c) The unit of rate constant. $1/(M^{3/2} s)$

Q14.

(0.5 mark)

How many half-lives are required for the concentration of reactant to decrease to 25% of its original value?

A) 1 B) 3 C) 1.5 D) 2.5 <u>E) 2</u>