University of Bahrain, Department of Chemistry

Chemy 102, First Semester 2013-2014

$2^{\text {nd }}$ hour examination
Examiners: Ali Hussain, Ahmad Saad, Fadheela Al-Salman, and Reema Balachandra Time : 75 min

Name
ID
Sec

Order

0

1

2

Concentration-Time

 Relation$[\mathrm{A}]=[\mathrm{A}]_{o}-k t$
$\ln \frac{[A]_{o}}{[A]}=k t$
$\frac{1}{[A]}=\frac{1}{[A]_{o}}+k t$

Q1.

What volume of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right.$, density $=0.88 \mathrm{~g} / \mathrm{mL}$, molar mass $=78.11$ $\mathrm{g} / \mathrm{mol}$) is required to produce $1.5 \times 10^{3} \mathrm{~kJ}$ of heat according to the following reaction?

$$
2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-6278 \mathrm{~kJ}
$$

A) 75 mL
B) 37 mL
C) 21 mL
D) 71 mL
E) 42 mL

Q2.

Choose the reaction that illustrates $\Delta \mathrm{H}^{\circ} \mathrm{f}$ for $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$.
A) $\mathrm{Ca}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$
B) $\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
C) $\mathrm{Ca}(\mathrm{s})+2 \mathrm{~N}(\mathrm{~g})+6 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$
D) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})$
E) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow \mathrm{Ca}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})$

Q3.
Using
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}=-2043 \mathrm{~kJ}$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Find $\Delta \mathrm{H}$ for the following reaction

$$
3 \mathrm{C}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g}) \quad \Delta \mathrm{H}=-105 \mathrm{~kJ}
$$

Q4.
Use the $\Delta \mathrm{H}^{\circ} \mathrm{f}$ and $\Delta \mathrm{H}^{\circ}$ information provided to calculate $\Delta \mathrm{H}^{\circ}$ f for IF:

$$
\mathrm{IF}_{7}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow \mathrm{IF}_{5}(\mathrm{~g})+2 \mathrm{IF}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-89 \mathrm{~kJ}
$$

$\Delta \mathrm{H}^{\circ} \mathrm{f}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{IF}_{7}(\mathrm{~g}) \quad-941$
$\mathrm{IF}_{5}(\mathrm{~g}) \quad-840$
A) $101 \mathrm{~kJ} / \mathrm{mol}$
B) $-146 \mathrm{~kJ} / \mathrm{mol}$
C) $-190 \mathrm{~kJ} / \mathrm{mol}$
D) $-95 \mathrm{~kJ} / \mathrm{mol}$
E) $24 \mathrm{~kJ} / \mathrm{mol}$

Q5.

Using

$$
\begin{array}{ll}
\mathrm{H}(\mathrm{~g})+\mathrm{Br}(\mathrm{~g}) \rightarrow \mathrm{HBr}(\mathrm{~g}) & \Delta \mathrm{H}=-368 \mathrm{~kJ} \\
2 \mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{Br}(\mathrm{~g}) & \Delta \mathrm{H}=+386 \mathrm{~kJ} \\
2 \mathrm{H}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-436 \mathrm{~kJ}
\end{array}
$$

(a) $\mathrm{Br}-\mathrm{Br}$ bond enthalpy $=\underline{193} \mathrm{~kJ}$
(b) Arrange the following bonds from weakest to strongest:
$\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}, \mathrm{H}-\mathrm{Br}$

$\mathrm{Br}-\mathrm{Br}$ weakest	$\mathrm{H}-\mathrm{Br}$	$\mathrm{H}-\mathrm{H}$ strongest

Q6.
(1 mark)
Given $\mathrm{w}=0$, an endothermic reaction has the following.
A) $+\Delta \mathrm{H}$ and $-\Delta \mathrm{E}$
B) $-\Delta \mathrm{H}$ and $+\Delta \mathrm{E}$
C) $+\Delta \mathrm{H}$ and $+\Delta \mathrm{E}$
D) $-\Delta \mathrm{H}$ and $-\Delta \mathrm{E}$

Q7.

Given the balanced equation $2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$.
If the rate of formation of O_{2} is $0.694 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$, what is the rate of the loss of O_{3} ?
A) $0.463 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
B) $1.04 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
C) $0.643 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
D) $0.231 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
E) $4.16 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$

Q8.
Consider the following balanced chemical equation:
$\mathrm{H}_{2} \mathrm{O}_{2}(a q)+3 \mathrm{I}^{-}(a q)+2 \mathrm{H}^{+}(a q) \rightarrow \mathrm{I}_{3}^{-}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)$

In the first 10.0 seconds of the reaction, the concentration of I^{-}dropped from 1.000 M to 0.868 M . Calculate the average rate of this reaction in this time interval.

$$
\text { Rate }=4.40 \times 10^{-3} \mathrm{M} / \mathrm{s}
$$

Q9.

The graph below is for the reaction $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

Determine
a) The order of reaction 1
b) The rate constant of the reaction $0.000290 \mathrm{~s}^{-1}$
c) The initial concentration of $\mathrm{SO}_{2} \mathrm{Cl}_{2} \quad 0.100 \mathrm{M}$
d) The rate of reaction when the concentration of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is 0.0800 M .
$2.32 \times 10^{-5} \mathrm{M} \mathrm{s}^{-1}$

Q10.
The graph below is for the reaction $\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{O}(\mathrm{g})$

Determine:
a) The order of reaction. 2
b) The rate constant of the reaction. $0.255 \mathrm{M}^{-1} \mathrm{~s}^{-1}$
c) The initial concentration of $\mathrm{NO}_{2} \cdot 0.0100 \mathrm{M}$
d) The concentration of NO_{2} after 1300 s. $2.32 \times 10^{-3} \mathrm{M}$

Q11.

The reaction between nitrogen dioxide and carbon monoxide is given by the following equation: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$

The rate constant at 701 K was measured as $2.57 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and that at 895 K was measured as $567 \mathrm{M}^{-1} \mathrm{~s}^{-1}$. Find the activation energy for the reaction in $\mathrm{kJ} / \mathrm{mol}$.

$$
\mathrm{E}_{\mathrm{a}}=150 \mathrm{~kJ} / \mathrm{mol}
$$

Q12.

Given the following rate law, how does the rate of reaction change if the concentration of Y is doubled?

Rate $=k[\mathrm{X}]^{2}[\mathrm{Y}]^{3}$
A) The rate of reaction will increase by a factor of 9 .
B) The rate of reaction will increase by a factor of 2 .
C) the rate of reaction will increase by a factor of 8 .
D) The rate of reaction will increase by a factor of 4 .
E) The rate of reaction will remain unchanged.

Q13.

The data below is for the reaction $\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{COCl}_{2}(\mathrm{~g})$

$[\mathrm{CO}](\mathrm{M})$	$\left[\mathrm{Cl}_{2}\right](\mathrm{M})$	Initial Rate $\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$
0.25	0.40	0.696
0.25	0.80	1.97
0.50	0.80	3.94

Determine
a) The order of reaction with respect to CO. 1
b) The order of reaction with respect to Cl_{2}. $3 / 2$
c) The unit of rate constant. $1 /\left(\mathrm{M}^{3 / 2} \mathrm{~s}\right)$

Q14.

(0.5 mark)

How many half-lives are required for the concentration of reactant to decrease to 25% of its original value?
A) 1
B) 3
C) 1.5
D) 2.5
E) 2

