University of Bahrain, Department of Chemistry Chemy 102, First Semester 2013-2014, 3rd hour examination Time: 75 min

Instructors:

Drs. Ali Hussain, Ahmed Saad, Fadheela Al-Salman, and Reema Balachandra

<u>Q1</u> (1 mark)

The reaction $2H_2O_2$ (aq) $\rightarrow 2H_2O + O_2$ (g) is believed to take place by a two-step path:

$$H_2O_2 (aq) + I^- (aq) \rightarrow H_2O + IO^- (aq)$$

 $H_2O_2 (aq) + IO^- (aq) \rightarrow H_2O + O_2 (g) + I^- (aq)$

The catalyst in this reaction is I

 $\underline{\mathbf{O2}}$ (1 mark)

The rate law for the reaction $2NO_2 + O_3 \rightarrow N_2O_5 + O_2$ is rate = $k[NO_2][O_3]$. Which one of the following mechanisms is consistent with this rate law?

A)
$$NO_2 + NO_2 \rightarrow N_2O_4$$
 (fast)
 $N_2O_4 + O_3 \rightarrow N_2O_5 + O_2$ (slow)

B)
$$NO_2 + O_3 \rightarrow NO_5$$
 (fast)
 $NO_5 + NO_5 \rightarrow N_2O_5 + \frac{5}{2}O_2$ (slow)

C)
$$NO_2 + O_3 \rightarrow NO_3 + O_2$$
 (slow)
 $NO_3 + NO_2 \rightarrow N_2O_5$ (fast)

D)
$$NO_2 + NO_2 \rightarrow N_2O_2 + O_2$$
 (slow)
 $N_2O_2 + O_3 \rightarrow N_2O_5$ (fast)

 $\underline{\mathbf{O3}}$ (1 mark)

The following mechanism has been suggested for the reaction

$$H_2O_2 + 2H^+ + 2I^- \rightarrow I_2 + 2H_2O$$

$$H_2O_2 + I^- \rightarrow HOI + OH^-$$

 $OH^- + H^+ \rightarrow H_2O$
 $HOI + H^+ + I^- \rightarrow I_2 + H_2O$

Identify all intermediates included in this mechanism.

A) H^+ and I^-

D) HOI only

B) H⁺ and HOI

E) H₂O and OH⁻

C) HOI and OH

Q4 (2 marks)

Given the equilibrium constants for the following reactions

$$2C_2H_2(g) + 2H_2(g) \leftrightarrows 2C_2H_4(g)$$
 $\mathbf{K} = 2.92 \times 10^{49}$ $C_2H_6(g) \leftrightarrows C_2H_4(g) + H_2(g)$ $\mathbf{K} = 1.96 \times 10^{-18}$

What is **K** for the reaction $C_2H_2(g) + 2H_2(g) \leftrightarrows C_2H_6(g)$?

a)
$$3.6 \times 10^{53}$$

b)
$$1.66 \times 10^{21}$$
 c) 2.8×10^{42} d) 9.4×10^{-8} e) 1.1×10^{7}

c)
$$2.8 \times 10^{42}$$

d)
$$9.4 \times 10^{-8}$$

e)
$$1.1 \times 10^7$$

<u>Q</u>5 (2.5 marks)

Consider the following reaction at 1000 K

FeO
$$(s) + CO(g) \rightleftharpoons Fe(s) + CO_2(g)$$
 $K = 0.259$

What is the equilibrium partial pressure of CO₂ at 1000 K if the initial partial pressures are $P_{CO} = 1.000$ atm and $P_{CO_2} = 0.500$ atm? Show your work

Since Q = 0.5 > K, then reaction goes backward to achieve equilibrium.

$$(0.500-x)/(1.00+x) = 0.259 \implies x = 0.191 \text{ atm}$$

$$P_{CO_2} = 0.500 - x = 0.309 \text{ atm}$$

<u>Q</u>6 (1 mark)

Consider the equilibrium $COCl_2(g) \leftrightarrows CO(g) + Cl_2(g) \Delta H > 0$ Which of the following effects will shift the equilibrium to the right?

- I-The amount of CO is decreased.
- II-The amount of Cl_2 is increased.
- The temperature is increased. III-
- IV-The volume is decreased.
- a) II and IV b) I, III and IV c) II only d) IV only e) I and III

Q7 (2.5 marks)

A mixture consists initially of only N_2 and H_2 was allowed to come to equilibrium at a given temperature $N_2(g) + 3H_2(g) \stackrel{\leftarrow}{\rightarrow} 2NH_3(g)$.

The mixture at equilibrium contains 2.0 atm of N_2 , 3.0 atm of H_2 , and 1.5 atm of NH_3 . What was the initial pressure of H_2 ? Show your work

$$N_2(g) + 3H_2(g) \stackrel{\leftarrow}{\rightarrow} 2NH_3(g)$$

P _o / atm	$P_{o}(N_{2})$	$P_{o}(H_{2})$	0
ΔP / atm	- x	-3x	+2x
P _{eq} / atm	2.0	3.0	1.5

$$P_{eq} (NH_3) = 1.5 = 2x \implies x = 0.75 \text{ atm}$$

$$P_o(H_2) - 3x = 3.0 \Rightarrow P_o(H_2) = 5.25 \text{ atm}$$

 $\mathbf{Q8}$ (2 marks)

Arrange the following 0.1M aqueous solutions in order of increasing pH FeCl₃, LiClO₄, Ba(OH)₂, HNO₃, NH₄CN [K_a NH₄⁺ = 5.6×10^{-10} , K_b CN⁻ = 1.7×10^{-5}]

 $\mathbf{Q9}$ (1 mark)

What is the pOH of 0.501 M HBr?

b)
$$-0.823$$

Q10 (2.5 marks)

The pH of 0.400 M NaNO₂ is 8.42, what is K_b for NO₂⁻? Show your work

$$pH = 8.42 \Rightarrow [H^+] = 3.80 \times 10^{-9} \text{ M & [OH^-]} = 2.63 \times 10^{-6} \text{ M}$$

$$NO_2^-(aq) + H_2O \iff HNO_2(aq) + OH^-(aq)$$

$$K_{\rm b} = [x^2/(0.400-x)] \approx x^2/0.400 = (2.63\times10^{-6})^2/0.400$$

$$K_b = 1.73 \times 10^{-11}$$

Q11 (2 marks)

Classify each salt of the following as acidic, basic, or neutral in an aqueous solution.

 $Ba(CN)_2$ basic

NiBr₂ acidic

NH₄NO₃ acidic

KI neutral