University of Bahrain, Department of Chemistry
 Chemy 102, First Semester 2013-2014, $3^{\text {rd }}$ hour examination Time : 75 min

Instructors:
Drs. Ali Hussain, Ahmed Saad, Fadheela Al-Salman, and Reema Balachandra

01

(1 mark)
The reaction $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}(\mathrm{~g})$ is believed to take place by a two-step path:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{IO}^{-}(\mathrm{aq}) \\
& \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{IO}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{I}^{-}(\mathrm{aq})
\end{aligned}
$$

The catalyst in this reaction is I^{-}

Q2

The rate law for the reaction $2 \mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{O}_{2}$ is rate $=k\left[\mathrm{NO}_{2}\right]\left[\mathrm{O}_{3}\right]$. Which one of the following mechanisms is consistent with this rate law?
A) $\mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4} \quad$ (fast)

$$
\begin{equation*}
\mathrm{N}_{2} \mathrm{O}_{4}+\mathrm{O}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{O}_{2} \quad \text { (slow) } \tag{fast}
\end{equation*}
$$

B) $\mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{5}$
$\mathrm{NO}_{5}+\mathrm{NO}_{5} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}+5 / 2 \mathrm{O}_{2}$ (slow)
C) $\mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{3}+\mathrm{O}_{2}$ (slow)
$\mathrm{NO}_{3}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5} \quad$ (fast)
D) $\mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}$ (slow)
$\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5} \quad$ (fast)

Q3

The following mechanism has been suggested for the reaction

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-} \rightarrow \mathrm{HOI}+\mathrm{OH}^{-} \\
& \mathrm{OH}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{HOI}+\mathrm{H}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Identify all intermediates included in this mechanism.
A) H^{+}and I^{-}
D) HOI only
B) H^{+}and HOI
E) $\mathrm{H}_{2} \mathrm{O}$ and OH^{-}
C) HOI and OH^{-}

Given the equilibrium constants for the following reactions

$$
\begin{array}{ll}
2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) & \mathbf{K}=2.92 \times 10^{49} \\
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \leftrightarrows \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) & \mathbf{K}=1.96 \times 10^{-18}
\end{array}
$$

What is \mathbf{K} for the reaction $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$?
a) 3.6×10^{53}
b) 1.66×10^{21}
c) 2.8×10^{42}
d) 9.4×10^{-8}
e) 1.1×10^{7}

Q5

Consider the following reaction at 1000 K
$\mathrm{FeO}(s)+\mathrm{CO}(g) \leftrightarrows \mathrm{Fe}(s)+\mathrm{CO}_{2}(g) \quad \mathrm{K}=0.259$
What is the equilibrium partial pressure of CO_{2} at 1000 K if the initial partial pressures are $\mathrm{P}_{\mathrm{CO}}=1.000 \mathrm{~atm}$ and $\mathrm{P}_{\mathrm{CO}_{2}}=0.500 \mathrm{~atm}$? Show your work

Since $\mathrm{Q}=0.5>\mathrm{K}$, then reaction goes backward to achieve equilibrium.

$$
\begin{array}{lcc}
& \mathrm{FeO}(s)+\mathrm{CO}(g) \leftrightarrows \mathrm{Fe}(s)+\mathrm{CO}_{2}(g) \\
\mathrm{P}_{\mathrm{o}} / \mathrm{atm} & 1.00 & 0.500 \\
\Delta \mathrm{P} / \mathrm{atm} & +x & -x \\
\mathrm{P}_{\mathrm{eq}} / \mathrm{atm} & 1.00+x & 0.500-x \\
& & \\
& (0.500-x) /(1.00+x)=0.259 \Rightarrow x=0.191 \mathrm{~atm} \\
& \therefore \mathrm{P}_{\mathrm{CO}_{2}}=0.500-x=0.309 \mathrm{~atm}
\end{array}
$$

06

Consider the equilibrium $\mathrm{COCl}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}>0$
Which of the following effects will shift the equilibrium to the right?
I- The amount of CO is decreased.
II- The amount of Cl_{2} is increased.
III- The temperature is increased.
IV- The volume is decreased.
a) II and IV
b) I, III and IV
c) II only
d) IV only
e) I and III

A mixture consists initially of only N_{2} and H_{2} was allowed to come to equilibrium at a given temperature $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$.
The mixture at equilibrium contains 2.0 atm of $\mathrm{N}_{2}, 3.0 \mathrm{~atm}$ of H_{2}, and 1.5 atm of NH_{3}. What was the initial pressure of H_{2} ? Show your work

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \leftrightarrows 2 \mathrm{NH}_{3}(g)
$$

$\mathrm{P}_{\mathrm{o}} / \operatorname{atm}$	$\mathrm{P}_{\mathrm{o}}\left(\mathrm{N}_{2}\right)$	$\mathrm{P}_{\mathrm{o}}\left(\mathrm{H}_{2}\right)$	0
$\Delta \mathrm{P} / \operatorname{atm}$	$-x$	$-3 x$	$+2 x$
$\mathrm{P}_{\mathrm{eq}} / \operatorname{atm}$	2.0	3.0	1.5

$\mathrm{P}_{\mathrm{eq}}\left(\mathrm{NH}_{3}\right)=1.5=2 x \Rightarrow x=0.75 \mathrm{~atm}$
$\mathrm{P}_{\mathrm{o}}\left(\mathrm{H}_{2}\right)-3 x=3.0 \Rightarrow \mathrm{P}_{\mathrm{o}}\left(\mathrm{H}_{2}\right)=5.25 \mathrm{~atm}$

Q8

Arrange the following 0.1 M aqueous solutions in order of increasing pH
$\mathrm{FeCl}_{3}, \mathrm{LiClO}_{4}, \mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{CN}\left[K_{\mathrm{a}} \mathrm{NH}_{4}^{+}=5.6 \times 10^{-10}\right.$,
$K \mathrm{~b} \mathrm{CN}^{-}=1.7 \times 10^{-5}$]

$$
\underset{\text { (lowest } \mathrm{pH} \text {) }}{\mathrm{HNO}_{3}}<\mathrm{FeCl}_{3}<\mathrm{LiClO}_{4}<\mathrm{NH}_{4} \mathrm{CN}<\underset{\text { (highest pH) }}{\mathrm{Ba}(\mathrm{OH})_{2}}
$$

What is the pOH of 0.501 M HBr ?
a) 14.82
b) -0.823
c) 12.2
d) 0.823
e) 13.7

$\mathbf{Q 1 0}$

(2.5 marks)

The pH of $0.400 \mathrm{M} \mathrm{NaNO}_{2}$ is 8.42 , what is Kb_{b} for NO_{2}^{-}? Show your work

$$
\begin{aligned}
\mathrm{pH}=8.42 \Rightarrow & {\left[\mathrm{H}^{+}\right]=3.80 \times 10^{-9} \mathrm{M} \&\left[\mathrm{OH}^{-}\right]=2.63 \times 10^{-6} \mathrm{M} } \\
& \mathrm{NO}_{2}^{-}(a q)+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HNO}_{2}(a q)+\mathrm{OH}^{-}(a q)
\end{aligned}
$$

[]$_{0} / \mathrm{M}$	0.400	0	0
$\Delta[] / \mathrm{M}$	$-x$	$+x$	$+x$
[]$_{\mathrm{eq}} / \mathrm{M}$	$0.400-x$	x	x

$$
\begin{aligned}
& K_{\mathrm{b}}=\left[x^{2} /(0.400-x)\right] \approx x^{2} / 0.400=\left(2.63 \times 10^{-6}\right)^{2} / 0.400 \\
& \therefore K_{\mathrm{b}}=1.73 \times 10^{-11}
\end{aligned}
$$

011

Classify each salt of the following as acidic, basic, or neutral in an aqueous solution.
$\mathrm{Ba}(\mathrm{CN})_{2}$ basic
NiBr_{2} acidic
$\mathrm{NH}_{4} \mathrm{NO}_{3}$ acidic
KI neutral

