University of BAhrain
 CHEMISTRY 101
 FIRST HOUR EXAMINATION

$1^{\text {st }}$ November, 2005
Examiners: Drs.Sadeq Al Alawi, Osama, Saad, Ameera, Awatif, Reema, Layla Saleem, Salim, A. Taha \& Jameela
Time : 70 min.
Name \qquad I.D. \# \qquad Sec. \qquad
Circle the letter of the one correct answer. A double page of foolscap paper is provided for calculations but only the circled answers on this exam copy will be graded. Each question is worth one(1) point. Check that your paper has (14) questions.

$$
\mathrm{N}=6.022 \times 10^{23}
$$

MULTIPLE CHOICE :

Q.1. Give the total number of protons and electrons in N_{2} is :
a. 28
b. 18
c. 17
d. 27
e. 27
Q.2. The name of $\mathrm{Fe}\left(\mathrm{ClO}_{3}\right)_{3}$ is
a. Iron Chlorate
b. Iron (III) perchlorate
c. Iron (III) Chlorite
d. Iron (III) Hypochlorite
e. Iron(III) Chlorate
Q.3. The formula of dichlorine heptoxide is :
a. $\mathrm{O}_{7} \mathrm{Cl}_{2}$
b. $\mathrm{O}_{2} \mathrm{Cl}_{7}$
c. $\mathrm{Cl}_{2} \mathrm{O}_{7}$
d. $\mathrm{Cl}_{3} \mathrm{O}_{8}$
e. $\mathrm{Cl}_{4} \mathrm{O}_{7}$
Q.4. The mass of sodium in 4.86 mole of $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is :
a. $\quad 223.5 \mathrm{~g}$
b. $\quad 83.6 \mathrm{~g}$
c. $\quad 305.7 \mathrm{~g}$
d. $\quad 544.3 \mathrm{~g}$
e. $\quad 505.4 \mathrm{~g}$
Q.5. How many atoms are there in one gram of $\mathrm{Ni}-60($ atomic mass $=59.948)$
a) 1.005×10^{22} atoms
b) 1.005×10^{23} atoms
c) 1.1817×10^{22} atoms
d) 1.1817×10^{23} atoms
e) 1.258×10^{23} atoms
Q.6. The mass of $\mathrm{Fe}(\mathrm{OH})_{3}$ that contains 1.85×10^{25} molecules of $\mathrm{Fe}(\mathrm{OH})_{3}$ is :
a. $6.5 \times 10^{2} \mathrm{~g}$
b. $3.28 \times 10^{3} \mathrm{~g}$
c. $1.65 \times 10^{5} \mathrm{~g}$
d. $32.8 \times 10^{2} \mathrm{~g}$
e. $4.65 \times 10^{4} \mathrm{~g}$
Q.7. The percentage by mass of $\operatorname{Sulfur}(\mathrm{S})$ and Oxygen (O) in $\mathrm{Co}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is
a. 24.3%; 56.5% respectively
b. $32.6 \% ; 38.7 \%$ respectively
c. $23.7 \% ; 47.3 \%$ respectively
d. 47.3%; 23.7% respectively
e. $56.3 \% ; 14.8 \%$ respectively
Q.8. Given the reaction:

$$
\mathbf{3 M g}(\mathrm{s})+\mathbf{N}_{2(\mathrm{~g})} \rightarrow \mathbf{M g}_{3} \mathbf{N}_{2}(\mathbf{s})
$$

10.5 g of Mg was allowed to react with 10.5 g of N_{2}. What is the limiting reagent and the mass of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ formed?
a. $\mathrm{Mg} ; 14.5 \mathrm{~g}$
b. $\mathrm{N}_{2} ; 14.5 \mathrm{~g}$
c. $\mathrm{Mg} ; 37.8 \mathrm{~g}$
d. $\mathrm{N}_{2} ; 37.8 \mathrm{~g}$
e. $\mathrm{Mg}_{3} \mathrm{~N}_{2} ; 37.8 \mathrm{~g}$
Q.9. In balancing the equation

$$
\ldots \mathrm{CH}_{3} \mathrm{NH}_{2}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{N}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

The sum of total coefficient is :
a. 29
b. 30
c. 13
d. 16
e. 33
Q. 10 The number of hydrogen atoms in 12.5 g of urea. $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}\right]$ is :
a) 2.00×10^{24}
b) 5.01×10^{23}
c) 1.00×10^{24}
d) 2.50×10^{23}
e) 1.25×10^{23}
Q. 11 Analysis of a pure compound gave the following chemical analysis.

$$
\mathrm{Mg}=16.39 \% \quad ; \mathrm{N}=18.89 \% \quad ; \mathrm{O}=64.72 \%
$$

What will be the simplest formula for the compound
a) $\mathrm{Mg}(\mathrm{NO})_{2}$
b) $\mathrm{Mg}\left(\mathrm{NO}_{2}\right)_{2}$
c) $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
d) $\mathrm{Mg}\left(\mathrm{N}_{3} \mathrm{O}_{2}\right)$
e) $\mathrm{Mg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$
Q.12. Eu has two isotopes. If the first isotope has a mass of 150.960 (48.03%), what is the mass of the second isotope?
a) 155.586
b) 151.960
c) 152.884
d) 154.679
e) 154.960
Q. 13 Calculate the mass of excess reagent which is left unreacted when 90 g of SO_{2} is mixed with 128 g of O_{2}.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

a) 14.7 g
b) 24.6 g
c) 58.0 g
d) 97.30 g
e) 105.5 g
Q. 14 When 125 g 0f pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$ were burned in air, 151 g of CO_{2} were formed. What is the \% yield of CO_{2} ?

$$
\mathrm{C}_{5} \mathrm{H}_{12(\mathrm{~g})}+\mathbf{8} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 5 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

a) 65.7%
b) 39.5%
c) 13.3%
d) 20.5%
e) 83.5%

