UNIVERSITY OF BAHRAIN CHEMISTRY 101 FIRST HOUR EXAMINATION

1st November, 2005

<u>Examiners</u>: Drs.Sadeq Al Alawi, Osama, Saad, Ameera, Awatif, Reema, Layla Saleem, Salim, A. Taha & Jameela

Time : 70 min.

Name _____

_____ I.D. # ______ Sec._____

Circle the letter of the one correct answer. A double page of foolscap paper is provided for calculations but <u>only the circled answers</u> <u>on this exam copy will be graded</u>. Each question is worth one(1) point. Check that your paper has (**14**) questions.

$N = 6.022 \text{ x } 10^{23}$

MULTIPLE CHOICE :

- **Q.1.** Give the total number of protons and electrons in N_2 is :
 - a. 28b. 18c. 17d. 27
 - e. 27
- **Q.2.** The name of $Fe(ClO_3)_3$ is
 - a. Iron Chlorate b. Iron (III) perchlorate
 - c. Iron (III) Chlorite d. Iron (III) Hypochlorite
 - e. Iron(III) Chlorate
- **Q.3.** The formula of dichlorine heptoxide is :
 - a. O_7Cl_2 b. O_2Cl_7 c. Cl_2O_7 d. Cl_3O_8 e. Cl_4O_7
- **Q.4.** The mass of sodium in 4.86 mole of $Na_2Cr_2O_7$ is :
 - a. 223.5 g b. 83.6 g c. 305.7 g d. 544.3 g e. 505.4 g

Q.5. How many atoms are there in one gram of Ni-60(atomic mass = 59.948)

- a) 1.005×10^{22} atoms b) 1.005×10^{23} atoms
- c) 1.1817×10^{22} atoms
- e) 1. 258 x 10^{23} atoms
- **Q.6.** The mass of $Fe(OH)_3$ that contains 1.85 x 10²⁵ molecules of $Fe(OH)_3$ is :
 - a. 6.5×10^2 gb. 3.28×10^3 gc. 1.65×10^5 gd. 32.8×10^2 g
 - e. $4.65 \times 10^4 \text{ g}$

Q.7. The percentage by mass of Sulfur (S) and Oxygen (O) in $Co_2(SO_4)_3$ is

- a. 24.3 %; 56.5 % respectively
 c. 23.7 %;47.3 % respectively
- e. 56.3 %; 14.8 % respectively
- **Q.8.** Given the reaction:

$$3Mg_{(s)} + N_{2(g)} \rightarrow Mg_3N_2(s)$$

10.5 g of Mg was allowed to react with 10.5 g of N_2 . What is the limiting reagent and the mass of Mg_3N_2 formed?

- a. Mg ; 14.5 gb. N2 ; 14.5 gc. Mg ; 37.8 gd. N2 ; 37.8 g
- e. Mg_3N_2 ; 37.8 g
- Q.9. In balancing the equation $\underbrace{CH_3NH_2 + \underbrace{O_2} \rightarrow \underbrace{CO_2 + \underbrace{N_2 + \underbrace{H_2O}}_{2}$

The sum of total coefficient is :

a. 29 b. 30 c. 13 d. 16 e. 33

Q.10 The number of hydrogen atoms in 12.5 g of urea. $[(NH_2)_2 CO]$ is :

a) 2.00×10^{24} b) 5.01×10^{23} c) 1.00×10^{24} d) 2.50×10^{23} e) 1.25×10^{23}

- b. 32.6 %; 38.7 % respectively
 d. 47.3 %; 23.7 % respectively
- d. $32.8 \times 10^2 \text{ g}$

d) 1.1817×10^{23} atoms

Q.11 Analysis of a pure compound gave the following chemical analysis. Mg = 16.39 %; N = 18.89 %; O = 64.72 %

What will be the simplest formula for the compound

a) Mg (NO)₂ b) Mg (NO₂)₂ c) Mg (NO₃)₂ d) Mg(N₃O₂) e) Mg₂(NO₃)₂

- **Q.12.** Eu has two isotopes. If the first isotope has a mass of 150.960 (48.03%), what is the mass of the second isotope?
 - a) 155.586 b) 151.960 c) 152.884 d) 154.679 e) 154.960
- **Q.13** Calculate the mass of excess reagent which is left unreacted when 90 g of SO_2 is mixed with 128 g of O_2 .

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

- a) 14.7 g b) 24.6 g c) 58.0 g d) 97.30 g e) 105.5 g
- **Q.14** When 125 g 0f pentane, C_5H_{12} were burned in air , 151 g of CO_2 were formed. What is the % yield of CO_2 ?

	$C_{5}H_{12(g)} + 8 \; O_{2(g)}$	>	$5CO_{2(g)}$	$+ 6H_2O_{(g)}$
a)	65.7%	b) 39.5%		
c)	13.3%	d) 20.5%		
2)	92 50/			

e) 83.5%