University of Bahrain
 Department of Chemistry
 CHEMY 101 (2 ${ }^{\text {nd }}$ Hour Exam)

First Semester 2008-2009
Date: $3^{\text {rd }}$ December, 2008

Examiner: Drs. Ahmed Saad,
Sadeq Al-Alawi, Saleem Akhter, Layla Saleem, Awatef Mahdi Suad Rashdan, Mrs. Reema

\qquad I.D. \#Section \#

$$
\begin{aligned}
& \mathrm{K}=\mathrm{t}\left({ }^{\circ} \mathrm{C}\right)+273.15 ; 760 \mathrm{~mm} \mathrm{Hg}=1 \mathrm{~atm} \\
& \mathrm{R}=0.0821 \underline{\underline{L} . \mathrm{atm}} \\
& \text { Mol.K }
\end{aligned}
$$

Q.1. The net ionic equation between $\mathrm{Ba}(\mathrm{OH})_{2}$ and HBr is
a) $\mathrm{OH}_{(\mathrm{aq})}^{-}+\mathrm{H}_{(\text {aq) }}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
b) $\mathrm{Ba}(\mathrm{OH})_{2(\mathrm{aq})}+2 \mathrm{HBr}_{(\mathrm{aq})} \rightarrow \mathrm{BaBr}_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
c) $\mathrm{OH}_{(\text {(aq) }}^{-}+\mathrm{HBr}_{(\mathrm{aq})} \rightarrow \mathrm{Br}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}$
d) $\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{H}_{(\mathrm{aq})}^{+} \rightarrow \mathrm{Ba}^{++}{ }_{(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
e) $\mathrm{Ba}^{++}{ }_{(\mathrm{aq})}+2 \mathrm{Br}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{BaBr}_{2(\mathrm{aq})}$
Q.2. The net ionic equation of precipitation reaction between $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2 \text { (aq) }}$ and $\mathrm{HCl}_{(\mathrm{aq})}$ is
a) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\text { aq })}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{PbCl}_{2(\mathrm{~s})}+2 \mathrm{HNO}_{3(\text { aq })}$
b) $\mathrm{Pb}^{++}{ }_{(\mathrm{aq})}+2 \mathrm{HCl}_{(\text {(qq) }} \rightarrow \mathrm{PbCl}_{2(\mathrm{~s})}+2 \mathrm{H}_{(\text {aq })}^{+}$
c) $\mathrm{Pb}^{++}{ }_{\text {(aq) }}+2 \mathrm{Cl}_{\text {(aq) }}^{-} \rightarrow \mathrm{PbCl}_{2(\mathrm{~s})}$
d) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\text { aq) }}+2 \mathrm{Cl}_{(\text {aq })}^{-} \rightarrow \mathrm{PbCl}_{2(\mathrm{~s})}+2 \mathrm{NO}_{3(\text { aq })}^{-}$
e) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\text { aq) }}+2 \mathrm{H}_{(\text {aq })}^{+} \rightarrow \mathrm{PbH}_{2(\mathrm{~s})}+2 \mathrm{NO}_{3 \text { (aq) }}^{-}$
Q.3. Which list contains only strong acids?
a) $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{HF}, \mathrm{HClO}_{4}$
b) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HClO}_{4}, \mathrm{NH}_{3}$
c) $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HClO}_{4}$
d) $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HClO}_{4}, \mathrm{HI}$
e) $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NaOH}, \mathrm{H}_{3} \mathrm{PO}_{4}$
Q.4. 5 g of unknown compound contains sulfate $\left(\mathrm{SO}_{4}\right)^{2-}$ is treated with excess of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ gives 1.32 g of BaSO_{4} precipitate. What is the \% of Oxygen (\mathbf{O}) in the compound?
a) 7.25%
b) 3.62%
c) 12.3%
d) 16.6%
e) 25.3%
Q.5. What volume of 0.1 M of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is needed to neutralize 25 ml of 0.05 M of NaOH

$$
\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}
$$

a) 12.0 ml
b) 6.25 ml
c) 14.3 ml
d) 15.6 ml
e) 24.8 ml
Q.6. 15 ml of $0.1 \mathrm{M} \mathrm{of}_{\mathrm{HCl}_{(\mathrm{aq})}}$ neutralize 20 ml of an aqueous solution of $\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})}$

$$
\mathrm{Ca}\left(\mathrm{OH}_{2}\right)_{(\mathrm{aq})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

What is the Molarity of $\mathbf{C a}(\mathbf{O H})_{2}$
a) 0.25 M
b) 0.012 M
c) 0.0375 M
d) 0.062 M
e) 0.085 M
Q.7. 5.60 g of glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ was dissolved in 600 ml of $\mathrm{H}_{2} \mathrm{O}$ (density of $\mathrm{H}_{2} \mathrm{O}=1 \mathrm{~g} / \mathrm{ml}$)
(density of solution $=1.1 \mathrm{~g} / \mathrm{ml}$)
What is the Molarity of the solution?
a) 0.0563 M
b) 0.324 M
c) 0.684 M
d) 0.123 M
e) 0.784 M
Q.8. What is the molality of 0.5 M of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (density of solution= $1.2 \mathrm{~g} / \mathrm{ml}$)
a) 0.12 m
b) 1.26 m
c) 0.88 m
d) 0.44 m
e) 1.65 m
Q.9. What is the mole fraction of NaOH in a 36.6% by mass of NaOH solution?
a) 0.102
b) 0.612
c) 0.206
d) 0.052
e) 0.036
Q.10. What is the \% by mass of NaNO_{3} in a 0.94 m solution?
a) 17.9%
b) 16.9%
c) 26.3%
d) 35.4%
e) 7.4%
Q.11. The volume of a gas is 841 ml at $62^{\circ} \mathrm{C}$. What is its volume if it is heated to $84^{\circ} \mathrm{C}$? (Suppose the pressure and no. of moles remains constant).
a) 896 ml
b) 377 ml
c) 958 ml
d) 1020 ml
e) 1103 ml
Q.12. The density of a gas is $1.6 \mathrm{~g} / \mathrm{L}$ at 640 mm Hg and $35^{\circ} \mathrm{C}$. What is its density at 1.1 atm and $28^{\circ} \mathrm{C}$.
a) $4.2 \mathrm{~g} / \mathrm{L}$
b) $2.14 \mathrm{~g} / \mathrm{L}$
c) $6.4 \mathrm{~g} / \mathrm{L}$
d) $3.6 \mathrm{~g} / \mathrm{L}$
e) $8.9 \mathrm{~g} / \mathrm{L}$
Q.13. Given $2 \mathrm{KClO}_{3(\mathrm{~s})} \xrightarrow{\Delta} 2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})}$

What volume of $\mathbf{O}_{\mathbf{2}}$ was obtained at 540 mm Hg and $30^{\circ} \mathrm{C}$ if 2.6 g of KClO_{3} was used up?
a) 1.12 L
b) 3.62 L
c) 2.45 L
d) 6.35 L
e) 9.96 L
Q.14. Given

$$
\mathrm{Br}_{2(\mathrm{~g})}+3 \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{Br}_{2} \mathrm{Cl}_{6(\mathrm{~g})}
$$

What volume of $\mathrm{Br}_{2} \mathrm{Cl}_{6(\mathrm{~g})}$ was obtained from 6L of Br_{2} and 6 L of Cl_{2} if the two gas reacted at the same temperature and pressure?
a) 6 L
b) 2 L
c) 8 L
d) 10 L
e) 12 L

Q.15. Given

$$
\mathrm{NaHCO}_{3(\mathrm{~s})}+\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}+\mathrm{CO}_{2(\mathrm{~g})}
$$

Suppose that 280 ml of CO_{2} was obtained over water at 980 mm Hg . At what temperature the gas CO_{2} exists if 0.012 mole of NaHCO_{3} was dissolved. (Vapour pressure of $\mathrm{H}_{2} \mathrm{O}$ at $28^{\circ} \mathrm{C}=23.1 \mathrm{~mm} \mathrm{Hg}$)
a) $62.6^{\circ} \mathrm{C}$
b) $52.6^{\circ} \mathrm{C}$
c) $73.4^{\circ} \mathrm{C}$
d) $84.8^{\circ} \mathrm{C}$
e) $43.4^{\circ} \mathrm{C}$

