University of Bahrain Department of Chemistry <u>CHEMY 101 (2nd Hour Exam)</u>

First Semester 2008-2009 Date: 3 rd December, 2008	Examiner: Drs. Ahmed Saad, Sadeq Al-Alawi, Saleem Akhter, Layla Saleem, Awatef Mahdi Suad Rashdan, Mrs. Reema		
Name:	I.D. # Section #		

K= t(°C) + 273.15; 760 mm Hg= 1 atm R= 0.0821 <u>L.atm</u> Mol.K

Q.1. The **net ionic equation** between $Ba(OH)_2$ and HBr is

- a) $OH_{(aq)}^{-} + H_{(aq)}^{+} \rightarrow H_2O_{(\ell)}$
- b) $Ba(OH)_{2(aq)} + 2HBr_{(aq)} \rightarrow BaBr_{2(aq)} + 2H_2O_{(\ell)}$
- c) $OH_{(aq)}^{-} + HBr_{(aq)} \rightarrow Br_{(aq)}^{-} + H_2O_{(\ell)}$
- d) $Ba(OH)_2 + 2H^+_{(aq)} \rightarrow Ba^{++}_{(aq)} + 2H_2O_{(\ell)}$
- e) $Ba^{++}{}_{(aq)} + 2Br^{-}_{(aq)} \rightarrow BaBr_{2(aq)}$

Q.2. The **net ionic equation** of precipitation reaction between $Pb(NO_3)_{2(aq)}$ and $HCl_{(aq)}$ is

- a) $Pb(NO_3)_{2(aq)} + 2HCl_{(aq)} \rightarrow PbCl_{2(s)} + 2HNO_{3(aq)}$
- b) $Pb^{++}{}_{(aq)} + 2HCl_{(aq)} \rightarrow PbCl_{2(s)} + 2H^{+}{}_{(aq)}$

c)
$$Pb^{++}_{(aq)} + 2Cl^{-}_{(aq)} \rightarrow PbCl_{2(s)}$$

- d) Pb (NO₃)_{2(aq)} + 2Cl⁻_(aq) \rightarrow PbCl_{2(s)} + 2NO⁻_{3(aq)}
- e) $Pb(NO_3)_{2(aq)} + 2H^+_{(aq)} \rightarrow PbH_{2(s)} + 2NO^-_{3(aq)}$

Q.3. Which **list** contains only strong acids?

- a) HCl, HNO₃, HF, HClO₄
- b) H₂SO₄, H₃PO₄, HClO₄, NH₃
- c) HCl, HNO₃, H₃PO₄, HClO₄
- d) HCl, H₂SO₄, HClO₄, HI
- e) HNO_3 , H_2SO_4 , NaOH, H_3PO_4

Q.4. 5 g of unknown compound contains sulfate $(SO_4)^{2-}$ is treated with excess of Ba(NO₃)₂ gives 1.32 g of BaSO₄ precipitate. What is the **% of Oxygen (O)** in the compound?

a) 7.25% b) 3.62% c) 12.3% d) 16.6% e) 25.3%

<u>Q.5.</u> What **volume** of 0.1 M of H_2SO_4 is needed to neutralize 25 ml of 0.05 M of NaOH

$$H_2SO_{4(aq)} + 2NaOH_{(aq)} \rightarrow Na_2SO_{4(aq)} + 2H_2O$$

a) 12.0 ml b) 6.25 ml c) 14.3 ml d) 15.6 ml e) 24.8 ml

Q.6. 15 ml of 0.1 M of $HCl_{(aq)}$ neutralize 20 ml of an aqueous solution of $Ca(OH)_{2(aq)}$

$$Ca(OH_2)_{(aq)} + 2HCl_{(aq)} \rightarrow CaCl_{2(aq)} + 2H_2O_{(\ell)}$$

What is the Molarity of Ca(OH)₂

a)	0.25 M	b) 0.012 M	c) 0.0375 M	d) 0.062 M	e) 0.085 M
/	••=•			.,	

Q.7. 5.60 g of glucose $C_6H_{12}O_6$ was dissolved in 600 ml of H_2O (density of $H_2O = 1$ g/ml) (density of solution = 1.1 g/ml) What is the **Molarity of the solution**?

	a) 0.0563	M b)	0.324 M c) 0.684 M	d) 0.123 M	e) 0.784 N
--	-----------	------	-----------	-----------	------------	------------

Q.8. What is the **molality** of 0.5 M of Na₂CO₃ solution (density of solution= 1.2 g/ml)

a) 0.12 m b) 1.26 m c) 0.88 m d) 0.44 m e) 1.65 m

Q.9. What is the **mole fraction** of NaOH in a 36.6 % by mass of NaOH solution?

a) 0.102 b) 0.612 c) 0.206 d) 0.052 e) 0.036

Q.10. What is the % by mass of NaNO₃ in a 0.94 m solution?

a)	17.9% b) 16.9%	c)	26.3%	d)	35.4%	e)	7.4	%
/		/ = = = : =	- /	/ _ / _	/		- /		

Q.11. The volume of a gas is 841 ml at 62°C. What is **its volume** if it is heated to 84°C? (Suppose the pressure and no. of moles remains constant).

a) 896 ml b) 377 ml c) 958 ml d) 1020 ml e) 1103 ml

Q.12. The density of a gas is 1.6 g/L at 640 mm Hg and 35°C. What is its **density** at 1.1 atm and 28°C.

a) 4.2 g/L b) 2.14 g/L c) 6.4 g/L d) 3.6 g/L e) 8.9 g/L

<u>Q.13.</u> Given $2\text{KClO}_{3(s)}$ Δ $2\text{KCl}_{(s)} + 3\text{O}_{2(g)}$

What **volume of O**₂ was obtained at 540 mm Hg and 30°C if 2.6 g of KClO₃ was used up?

a) 1.12 L b) 3.62 L c) 2.45 L d) 6.35 L e) 9.96 L

Q.14. Given

$$Br_{2(g)} + 3Cl_{2(g)} \rightarrow Br_2Cl_{6(g)}$$

What volume of $Br_2Cl_{6(g)}$ was obtained from 6L of Br_2 and 6L of Cl_2 if the two gas reacted at the same temperature and pressure?

a) 6L b) 2L c) 8L d) 10L e) 12L

Q.15. Given

$$NaHCO_{3(s)} + HCl_{(aq)} \rightarrow NaCl_{(aq)} + H_2O_{(\ell)} + CO_{2(g)}$$

Suppose that 280 ml of CO₂ was obtained over water at 980 mm Hg. At **what temperature** the gas CO₂ exists if 0.012 mole of NaHCO₃ was dissolved. (Vapour pressure of H₂O at 28°C = 23.1 mm Hg)

a) 62.6°C b) 52.6°C c) 73.4°C d) 84.8°C e) 43.4°C