UNIVERSITY OF BAHRAIN
 CHEMISTRY 101 SECOND HOUR EXAMINATION

30 ${ }^{\text {th }}$ July, 2005
Time : 60 min .

Examiners: Drs.M. Al-Arab, A. Saad, Saeed \& A. Taha
I.D. \# \qquad Sec. \qquad
Circle the letter of the one correct answer. A double page of foolscap paper is provided for calculations but only the circled answers on this exam copy will be graded. Each question is worth one(1) point. Check that your paper has (13) questions.

$$
1 \mathrm{~atm}=760 \mathrm{mmHg}=760 \text { torr, } \mathrm{N}=6.022 \times 10^{23} \mathrm{~T}(\mathrm{~K})={ }^{\circ} \mathrm{C}+273.15
$$

MULTIPLE CHOICE :

Q.1. The net ionic equation between Potassium Phosphate and Calcium Nitrate will be :
a. $3 \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{PO}_{4}^{3-}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}$
b. $\mathrm{K}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{KNO}_{3(\mathrm{~s})}$
c. $2 \mathrm{Ca}^{2+}(\mathrm{aq})+3 \mathrm{PO}_{4}^{3-}(\mathrm{aq}) \rightarrow \quad \mathrm{Ca}_{2}\left(\mathrm{PO}_{4}\right)_{3(\mathrm{~s})}$
d. $3 \mathrm{~K}^{+}(\mathrm{aq})+3 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow 3 \mathrm{KNO}_{3(\mathrm{~s})}$
e. $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq}) \rightarrow \mathrm{CaPO}_{4(\mathrm{~s})}$
Q.2. Which of the following processes will likely result in a precipitation reaction?
a) Mixing a NaNO_{3} solution with CuSO_{4}.
b) Mixing BaCl_{2} solution with a $\mathrm{K}_{2} \mathrm{SO}_{4}$ solution.
c) Mixing KOH solution with HNO_{3} solution.
d) Mixing HCl solution with NaOH solution.
e) Mixing NaCl with $\mathrm{Ca}(\mathrm{OH})_{2}$ solution
Q.3. What is the net ionic equation for the reaction of Lithium Hydroxide (LiOH) with Hydroiodic Acid (HI) ?
a. $\mathrm{H}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{HI}_{(\mathrm{s})}$
b. $\mathrm{Li}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{KI}_{(\mathrm{s})}$
c. $\mathrm{LiOH}_{(\mathrm{aq})}+\mathrm{HI}_{(\mathrm{aq})} \rightarrow \mathrm{LiI}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{Li}(\mathrm{OH})_{(\mathrm{s})}+\mathrm{H}^{+}{ }_{(\text {aq })} \rightarrow \mathrm{Li}^{+}{ }_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}$
e. $\mathrm{OH}^{-}{ }_{(\text {aq })}+\mathrm{H}_{(\text {aq) }}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}$
Q.4. 40 ml of KOH is needed to neutralise 50 ml of $0.2{\mathrm{M} \mathrm{of} \mathrm{H}_{2} \mathrm{SO}_{4} \text { according to the equation }}^{\text {a }}$

$$
2 \mathrm{KOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4) \mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

What is the molarity of KOH solution?
a. 0.5 M
b. 1.0 M
c. 1.5 M
d. 2.0 M
e. 2.5 M
Q.5. 4 grams of an alloy contains Pb is treated with excess of HCl to give 3.8 g of PbCl_{2}. What is the percentage of Pb in the alloy?
a. 12.3%
b. 80.7%
c. 5.6%
d. 6.8%
e. 70.8%
Q.6. The volume of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ needed to neutralize 0.8 gram NaOH is :
a. $\quad 50 \mathrm{ml}$
b. $\quad 100 \mathrm{ml}$
c. $\quad 150 \mathrm{ml}$
d. 125 ml
e. 75 ml
Q.7. A gas that initially occupies 75.32 L undergoes a change so that its new pressure is 9.69 atm and its new volume is 64.50 L . what is its initial pressure? (suppose that the temperature and number of moles remain constant).
a. 26.30 atm
b. 11.16 atm
c. 34.84 atm
d. 8.30 atm
e. 46.03 atm
Q.8. $\quad 7.05 \mathrm{~g}$ of an unknown gas occupy 1500 ml at $38.5^{\circ} \mathrm{C}$ and 1.5 atm . Identify the gas.
a. HCl
b. O_{2}
c. O_{3}
d. SO_{2}
e. SO_{3}
Q.9. A sample of gas occupies a volume of 450 mL at 740 mm Hg and $16^{\circ} \mathrm{C}$. What will be the volume of the gas at STP?
a. 0.347 L
b. 0.388 L
c. 0.414 L
d. 0.506 L
e. 0.570 L
Q.10. A baloon is filled with helium (He) gas to a volume of 4.80 L at $45^{\circ} \mathrm{C}$. What will the volume be if the balloon is cooled to $-80^{\circ} \mathrm{C}$. (Suppose the pressure and number of moles remain constant).
a. 8.40 L
b. 6.00 L
c. 0.375 L
d. 4.80 L
e. 2.91 L
Q.11. A sample of natural gas contains 131.81 g methane $\left(\mathrm{CH}_{4}\right), 12.63 \mathrm{~g}$ ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ and 5.104 g propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$. If the total pressure of the gases is 1.37 atm , what is the partial pressure of $\mathrm{C}_{2} \mathrm{H}_{6}$ gas?
a. 0.0436
b. 0.0658
c. 0.0181
d. 0.0938
e. 0.0281
Q.12. The density of a gas is $1.50 \mathrm{~g} / \mathrm{L}$ at 2.0 atm at $35.5^{\circ} \mathrm{C}$. What is its density at $45.5^{\circ} \mathrm{C}$ and 3.8 atm .
a. $4.62 \mathrm{~g} / \mathrm{L}$
b. $2.76 \mathrm{~g} / \mathrm{L}$
c. $5.50 \mathrm{~g} / \mathrm{L}$
d. $7.53 \mathrm{~g} / \mathrm{L}$
e. $9.95 \mathrm{~g} / \mathrm{L}$
Q.13. Given : $\quad \mathrm{MgCO}_{3}(\mathrm{~s}) \rightarrow \mathbf{M g O}(\mathrm{s})+\mathrm{CO}_{\mathbf{2}}(\mathrm{g})$.
CO_{2} gas was collected over water at a total pressure of 1.0 atmosphere. If the volume of the gas collected was 0.326 L , what is the mass of MgCO_{3} used? (vapor pressure of water at $20^{\circ} \mathrm{C}=18$ mmHg)
a. 1.11 g
b. 1.34 g
c. 1.56 g
d. 1.84 g
1.96 g

