University of Bahrain
 CHEMISTRY 101
 SECOND HOUR EXAMINATION

$3^{\text {rd }}$ May, 2005

Time : 60 min .

Examiners: Drs. Ameera, Awatif, Sadeq Al Alawi, Osama, Saad, Reema, Layla Saleem, Salim, A. Taha \& Jameela

Name \qquad I.D. \# \qquad Sec. \qquad
Circle the letter of the one correct answer. A double page of foolscap paper is provided for calculations but only the circled answers on this exam copy will be graded. Each question is worth one(1) point. Check that your paper has (12) questions.
$1 \mathrm{~atm}=760 \mathrm{mmHg}=760$ torr, $\mathrm{N}=6.022 \times 10^{23} \mathrm{~T}(\mathrm{~K})={ }^{\circ} \mathrm{C}+273.15$

MULTIPLE CHOICE :

Q.1. The net ionic equation between Barium hydroxide $\mathrm{Ba}(\mathrm{OH})_{2}$ and nitrous acid HNO_{2} is :
a. $\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{2(\text { aq })} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{2}\right)_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}$
b. $\mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{NO}_{2}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{2}\right)_{2(\mathrm{aq})}$
c. $\mathrm{OH}^{-}{ }_{(\mathrm{aq})}+\mathrm{HNO}_{2(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{NO}_{2}^{-}(\mathrm{aq})$
d. $\mathrm{OH}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}$
e. $\left(\mathrm{OH}^{-}\right)_{2(a q)}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$
Q.2. The net ionic equation of the precipitation reaction between SrCl_{2} and CaSO_{4} is :
a) $\mathrm{SrCl}_{2(\text { aq })}+\mathrm{CaSO}_{4(\text { aq })} \rightarrow \mathrm{CaCl}_{2 \text { (aq) }}+\mathrm{SrSO}_{4(\mathrm{~s})}$
b) $\mathrm{Sr}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}^{2-}{ }_{4(\text { aq })} \rightarrow \mathrm{SrSO}_{4(\mathrm{~s})}$
c) $\mathrm{SrCl}_{2}+\mathrm{Ca}^{2+} \rightarrow \mathrm{Sr}^{2+}{ }_{(\text {aq })}+\mathrm{CaCl}_{2 \text { (aq) }}$
d) $\mathrm{SrCl}_{2(\mathrm{aq})}+\mathrm{SO}_{4(\mathrm{aq})}^{2-} \rightarrow \mathrm{SrSO}_{4(\mathrm{~s})}+2 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})}$
e) $2 \mathrm{Cl}_{(\mathrm{aq})}^{-}+\mathrm{Ca}^{2+}{ }_{(\text {aq })} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}$
Q.3. What volume of 0.375 M of HNO_{3} are needed to neutralize 75.0 ml of 0.2 M of $\mathrm{Ca}(\mathrm{OH})_{2}$

$$
\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})}+2 \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

a. 37.5 ml
b. 48.5 ml
c. 60.0 ml
d. 70.0 ml
e. 80.0 ml
Q.4. 140 ml of 0.8 M of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are needed to neutralise 66.9 ml of NaOH . What is the molarity of NaOH .

$$
2 \mathrm{NaOH}_{9 \mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

a. 1.52 M
b. 2.36 M
c. 6.03 M
d. 3.35 M
e. 4.45 M
Q.5. A gas was initially at 74 mmHg and $95^{\circ} \mathrm{C}$; has a volume of 1500 ml undergoes a change so that its final volume and temperature are 1.06 L and 300 K . What is its final pressure.
a. 121 mmHg
b. 50 mmHg
c. 181 mmHg
d. 85 mmHg
e. 260 mmHg
Q.6. A gas container has a pressure of 1.86 atm at $12^{\circ} \mathrm{C}$. What will be its pressure at a temperature of $35^{\circ} \mathrm{C}$?
a. $\quad 0.51 \mathrm{~atm}$
b. $\quad 1.01 \mathrm{~atm}$
c. $\quad 1.51 \mathrm{~atm}$
d. 2.01 atm
e. 2.51 atm
Q.7. The molarity of a solution made by dissolving 2.38 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ in 12.1 ml of solution is :
a. 0.045 M
b. 0.095 M
c. 0.952 M
d. 1.19 M
e. 2.46 M
Q.8. The density of a gas at 1.5 atm and $60^{\circ} \mathrm{C}$ is $1.78 \mathrm{~g} / \mathrm{l}$. At what temperature the density will be $2.85 \mathrm{~g} / \mathrm{l}$ at 5 atm .
a. $246.9{ }^{\circ} \mathrm{C}$
b. $420.3^{\circ} \mathrm{C}$
c. $120.8^{\circ} \mathrm{C}$
d. $73.6^{\circ} \mathrm{C}$
e. $90.9^{\circ} \mathrm{C}$
Q.9. Given the reaction:

$$
4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

 same temperature and pressure.
a. 10.0 L
b. 6.40 L
c. 4.50 L
d. 8.40 L
e. 3.20 L
Q.10. Which of the following is insoluble in water.
a. $\mathrm{Ca}(\mathrm{OH})_{2}$
b. CaCl_{2}
c. CaCO_{3}
d. NaNO_{3}
e. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
Q.11. 0.5662 g of an ionic compound containing bromide ion (Br^{-}) is dissolved in water and treated with excess AgNO_{3}. If the mass of AgBr precipitate is 0.5434 g . What is $\% \mathrm{Br}$ in the compound.
a. 31.0%
b. 51.0%
c. 41.0%
d. 61.0%
e. 71.0%
Q.12. What are the number of moles of O_{2} in 22.4 L of O_{2} gas at STP ?
a. $\quad 0.500$ moles of O_{2}
b. $\quad 1.00$ moles of O_{2}
c. $\quad 1.50$ moles of O_{2}
d. $\quad 2.00$ moles of O_{2}
e. $\quad 2.50$ moles of O_{2}

