UNIVERSITY OF BAHRAIN CHEMISTRY 101 SECOND HOUR EXAMINATION

29th November, 2005

<u>Examiners</u>: Drs. Saeed, Osama, Saad, Sadeq, Awatef, Reema, Layla Saleem, Salim, A. Taha & Jameela

Time : 70 min.

 Name
 I.D. #
 Sec.

Circle the letter of the one correct answer. A double page of foolscap paper is provided for calculations but <u>only the circled answers</u> <u>on this exam copy will be graded</u>. Each question is worth one(1) point. Check that your paper has (15) questions.

1 atm = 760 mmHg , K= °C + 273.15, R = 0.0821 L.atm/K.mol

MULTIPLE CHOICE :

Q.1. Write the net ionic equation between HF and Ca(OH)₂.

a.
$$HF_{(aq)} + OH_{(aq)} \longrightarrow F_{(aq)} + H_2O_{(l)}$$

b. $2F_{(aq)} + Ca(OH)_{2(aq)} \longrightarrow CaF_{2(aq)} + 2OH_{(aq)}$
c. $H^+_{(aq)} + OH_{(aq)} \longrightarrow H_2O_{(l)}$
d. $2F_{(aq)} + Ca^{2+}_{(aq)} \longrightarrow CaF_{2(aq)}$
e. $2HF_{(aq)} + Ca(OH)_{2(aq)} \longrightarrow CaF_{2(aq)} + 2H_2O_{(l)}$

Q.2. The net ionic equation of the precipitation reaction between $Ba(NO_3)_2$ and Na_2SO_4 is :

- a) $\operatorname{Ba}^{2+}_{(\operatorname{aq})} + \operatorname{SO}_{4}^{2-}_{(\operatorname{aq})} \longrightarrow \operatorname{BaSO}_{4(s)}$
- b) $Ba(NO_3)_{2(aq)} + Na_2SO_{4(aq)} \longrightarrow BaSO_{4(s)} + 2NaNO_{3(aq)}$
- c) $2NO_{3}^{-}(aq) + Na_2SO_{4}(aq) \longrightarrow SO_{4}^{2-}(aq) 2NaNO_{3}(aq)$
- d) $Ba(NO_3)_{2(aq)} + SO_4^{2-}_{(aq)} \longrightarrow BaSO_{4(s)} + 2NO_3^{-}_{(aq)}$
- e) $2NO_{3}^{-}(aq) + 2Na^{+}(aq) \longrightarrow 2NaNO_{3}(aq)$

Q.3. 1.338 g of an ionic compound containing hydroxide ion (OH⁻) is treated with excess of $Fe(NO_3)_3$ solution. If the mass of precipitate $[Fe(OH)_3]$ formed was 1.96 g. What is the percentage of oxygen (O) in the compound?

a. 19.4%

$$Fe^{3+}{}_{(aq)} + 3(OH^{-})_{(aq)} \rightarrow Fe(OH)_{3 (s)}$$

c. 42.8%
d. 58.9%
e. 65.8%

- Q.4. What volume of 0.196 M of H_2SO_4 is needed to neutralize 54.4 ml of 0.3M of KOH? $H_2SO_{4(aq)} + 2KOH_{(aq)} \longrightarrow K_2SO_{4(aq)} + 2H_2O_{(l)}$
 - a. 25.3 ml b. 13.6 ml c. 35.4 ml d. 8.3 ml e. 41.6 ml
- **Q.5.** 19.9 ml of NaOH solution was needed to neutralise 5.4 g of H_3PO_4 .

 $3NaOH_{(aq)} + H_3PO_{4(aq)} \longrightarrow Na_3PO_{4(aq)} + 3H_2O_{(l)}$ What is the molarity of NaOH?

- a. 1.8 M b. 2.6 M c. 3.8 M d. 5.4 M e. 8.3 M
- **Q.6.** 502 ml of a gas was heated to 150°C so its final volume was 840 ml. What was its initial temperature? (assuming the pressure and number of mole remain constant).
 - a. -10.5°C b. -20.3°C c. 5.5 °C d. -147.1 °C e. 32.5 °C
- **Q.7.** A gas sample was initially at -131.3 °C and 480 mmHg was cooled to 23.4 °C. What is its new pressure? (volume and number of moles are constant)
 - a. 1.32 atm b. 0.52 atm c. 0.93 atm d. 2.63 atm e. 4.60 atm
- **Q.8.** The density of a gas is 4.86 g/L at 5.37 atm. What will the density be at 5.9 atm? (Assuming the temperature remains constant).
 - a. 12.30 g/L b. 8.62 g/L c. 9.75 g/L d. 6.67 g/L e. 5.34 g/L
- Q.9. 0.2 g of an unknown gas occupy 58 ml at 30°C and 2.5 atm. Identify the gas.
 - a. H_2S b. NO_2 c. N_2O d. SO_3 e. O_3
- **Q.10.** Given :

$2N_{2(g)} + O_{2(g)} \rightarrow 2N_2O_{(g)}$

What volume of $N_2O_{(g)}$ can be obtained from reaction of 30 L of N_2 with 10 L of O_2 ?(at the same temperature and pressure)

- a. 10 L b. 30 L c. 20 L d. 15 L e. 25 L
- Q.11. Given the following equation: CuSO_{4(aq)} + 2NaOH_(aq) → Na₂SO₄(aq) + Cu(OH)₂(s) What volume of 0.333 M CuSO₄ solution will be required to react completely with 35.6 mL of 0.874 M NaOH?
 - a) 16.8 mL b) 20.6 mL c) 26.7 mL d) 28.9 mL e) 46.7 mL
- **Q.12.** A sample of gas occupies a volume of 450 mL at 740 mmHg and -36.7°C. What will be the volume of the gas at STP?
 - a. 0.347 L b. 0.388 L c. 0.414 L d. 0.506 L e. 0.570 L

- Q.13. A 15.0 L vessel contains 190 g of CO_2 gas. What is the pressure of the gas inside the vessel at
65.3°C?a. 5.0 atmb. 6.0 atmc. 7.0 atmd. 8.0 atme. 9.0 atmQ.14. Given : $2KClO_3(s) \rightarrow 2KCl(s) + 3O_2(g)$
- If 10.9 g of KClO₃ were decomposed, how many liters (L) of $O_2(g)$ can be collected at STP?

a. 0.800 L b. 1.097 L c. 3.00 L d. 0.167 L e. 0.500 L

Q.15. A 5.71 g sample $SX_6(g)$ has a volume of 0.94 L at 1 atm and 217.5°C. Identify X:

a. Cl b. O c. N d. Br e. F