UNIVERSITY OF BAHRAIN DEPARTMENT OF CHEMISTRY 3rd hour Exam CHEMISTRY 101 FIRST SEMESTER 2010/ 2011

TIME: (90 mins)	*Examiners: Drs. Sadeq, Salim, M. Al-					
	Arab Ameera, Jameela, Saeed, Ali					
	Hussain, Suad, Saad and ,Fadheela,					
	Abdulla, Rema					

DATE: 29th December, 2010 (Wednesday) PLACE: Hall -18 (Examination Hall)

Name:______I.D.#_____Sec.___

Circle the letter of the one correct answer. A double page of foolscap paper is provided for calculations, *but only the circled answers on this exam copy will be graded*. Each question is worth one (1) point. Check that your paper has two parts Part A and Part B. Part A has15 questions and Part B has 6 questions.

$$\begin{array}{c} \mbox{K= t(^{\circ}C) + 273.15;} & 760 \mbox{ mm Hg= 1 atm} \\ \mbox{R= 0.0821} & \underline{\mbox{L.atm}} \\ \mbox{mol.K} \\ \mbox{R_{H}=} & 2.18 \ x \ 10^{-18} \ \mbox{J} & \mbox{h= 6.626 } x \ 10^{-34} \ \mbox{J.s} & \mbox{c = 3.00 } x \ 10^8 \ \mbox{ms}^{-1} \end{array}$$

Q.1. A sample of a gas occupies 1.40×10^3 mL at 25°C and 760 mmHg. What **volume** will it occupy at the same temperature and 380 mmHg?

A) 2,800 mL B) 2,100 mL C) 1,400 mL D) 1,050 mL E) 700 mL

Q.2. The gas pressure in a cylinder can is 1.8 atm at 25°C. If the gas is an ideal gas, what **pressure** would develop in the cylinder if it were heated to 475°C?

A) 9.04 atm B) 0.717 atm C) 3.26 atm D) 4.52 atm E) 13.5 atm

Q.3. How many molecules of N₂ gas can be present in a 2.5 L flask at 50°C and 650 mmHg?

A)	2.4×10^{22} molecules	D) 3.6×10^{25} molecules
/		_, _, _, _, _,

- B) 4.9×10^{22} molecules
- C) 3.1×10^{23} molecules
- E) 1.46×10^{23} molecules
- Q.4. Which of these gases will have the greatest density at the STP?

A) H_2 B) CC_1F_3 C) CO_2 D) C_2H_6 E) CF_4

Q.5. A sample of carbon monoxide gas was collected in a 2.0 L flask over water at 28°C and 810 mmHg. Calculate the **number of CO molecules** in the flask. (The vapor pressure of water at 28°C is 28.3 mmHg).

A) 5.0×10^{22} B) 2.5×10^{22} C) 1.0×10^{23} D) 5.4×10^{23} E) 3.8×10^{25}

Q.6. How many liters of oxygen gas at 153°C and 0.820 atm can be produced by the decomposition of 22.4 g of solid KClO₃? $2 \text{ KClO}_{3(s)} \Delta 2 \text{ KCl}_{(s)} + 3 \text{ O}_{2(g)}$

A) 23.3 L B) 0.085 L C) 46.8 L D) 7.79 L E) 11.7 L

Q.7. A gas mixture of Ne and Ar has a total pressure of 4.00 atm and contains total 16.0 mol of gas. If the partial pressure of Ne is 2.75 atm, **how many moles of Ar** are in the mixture?

A) 9.25 B) 11.0 C) 3.00 D) 0.75 E) 1	J	B) 11.0	C) 5.00	D) 6.75	E)	12.0
--	---	---------	---------	---------	----	------

Q.8. Green laser emit radiation at 532 nm. The **frequency and energy** of this radiation are:

A)	8.12 x 10 ¹³ Hz	and	2.90×10^{-16} J, respectively
B)	$5.64 \times 10^{14} \text{ Hz}$	and	3.74×10^{-19} J, respectively
C)	1.60 x 10 ¹⁵ Hz	and	$4.60 \ge 10^{-15}$ J, respectively
D)	$1.4 \text{ x } 10^{14} \text{ Hz}$	and	9.34 x 10^{-20} J, respectively
E)	$2.82 \text{ x } 10^{14} \text{ Hz}$	and	1.87×10^{-19} J, respectively

- **Q.9.** A line in the Balmer Series occurs at 397.01 nm. Calculate " \mathbf{n}_{ni} " for the transition associated with this line.
 - A) 3 B) 4 C) 5 D) 6 E) 7

Q.10. Which one of the following sets of quantum numbers is not possible?

n	1	m_l	ms
A. 4	3	-2	+1/2
B. 3	0	1	-1/2
C. 3	0	0	+1/2
D. 2	1	1	-1/2
E. 2	0	0	+1/2

Q.11. What is the electron configuration of Cu^{+1}

A)
$$[Ar] 4s^{2}3d^{7}$$

D) $[Ar]4s^{2}3d^{8}$
B) $[Ar]3d^{9}$
C) $[Ar]3d^{10}$
E) $[Ar]4s^{1}3d^{9}$

Q.12. Which ground-state atom has **an electron configuration** described by the following *orbital diagram*?

[Ar] $\frac{\uparrow\downarrow}{4s}$	<u>↑↓</u>	<u>↑↓</u>	<u>↑↓</u> 3d	<u>↑↓</u>	<u>↑↓</u>	$\frac{\uparrow\downarrow}{4p}$	<u>↑</u>		
A) phosphor	rus				B) g	ermanium		C) seleniu	m
D) tellurium					E) no	one of thes	se		

Q.13. A ground-state atom of **manganese** has _____ unpaired electrons and is _____.

- A) 0, diamagnetic D)
- B) 2, diamagnetic
- C) 3, paramagnetic

- D) 5, paramagnetic
- E) 7, paramagnetic
- **Q.14.** Which of the following is the electron configuration of an **excited state** of an iron atom?
 - A) $[Ar]4s^23d^7$ B) $[Ar]4s^23d^6$ C) $[Ar]4s^23d^8$ D) $[Ar]4s^13d^7$ E) $[Ar]4s^13d^5$
- Q.15. Which ion is *isoelectronic* with Ar?

A) Fe^{2+} B) F^- C) Br^- D) Ga^{3+} E) Ca^{2+}