University of Bahrain
 College of Science
 Department of Mathematics
 Semester 2002/2003
 Final Examination

MATHS 102 : Calculus II

Question 1 [6 marks]

a) Find the limit if it exists

$$
\lim _{x \rightarrow \infty} \frac{3^{x}+2}{x^{3}+1}
$$

b) Find $\frac{d y}{d x}$ if $\sinh (x y)=\ln (x+y)$

Question 2 [8 marks]

Evaluate the following integrals
a) $\int \sin ^{2} 2 x \sin x d x$
b) $\quad \int \sqrt{1+4 x^{2}} d x$

Question 3 [8 marks]
a) The region in the first quadrant that is enclosed by the x -axis and the curve $y=3 x \sqrt{1-x}$ is revolved about the y-axis to generate a solid. Find the volume of the reslted solid.
(Hint: use the shell method)
b) Find the length of the curve of $y=\frac{2}{3}\left(x^{2}+1\right)^{\frac{3}{2}}$ from $x=0$ to $x=2$.

Question 4 [12 marks]

Determine whether the following series is absolutely convergent (A.C.), conditionally convergent (C.C.), or divergent.
a) $\sum_{n=1}^{\infty} \frac{4 \tan ^{-1} n}{n^{2}}$
b) $\quad \sum_{n=2}^{\infty}\left(1-\frac{1}{n}\right)^{n}$
c) $\quad \sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}}$

Question 5: [8 marks]

Given the function $f(x)=\ln (2-x)$.
a) Find a Maclaurin series for $f(x)$.
b) Find the interval of convergence of the power series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}(1-x)^{n}$.

Question 6: [8 marks]

a) Find a polar equation that has the same graph as the equation $x^{2}=8 y$.
b) Find the area of the region that lies inside the circle $r=1$ and outside the cardiod $r=1-\cos \theta$.

