University of Bahrain College of Science Department of Mathematics Semester 2002/2003 Final Examination

MATHS 102 : Calculus II

Time : 2 hours

<u>Question 1</u> [6 marks]

a) Find the limit if it exists

$$\lim_{x \to \infty} \frac{3^x + 2}{x^3 + 1}$$

b) Find $\frac{dy}{dx}$ if $\sinh(xy) = \ln(x+y)$

<u>Question 2</u> [8 marks]

Evaluate the following integrals

a)
$$\int \sin^2 2x \sin x \, dx$$
 b) $\int \sqrt{1 + 4x^2} \, dx$

Question 3 [8 marks]

a) The region in the first quadrant that is enclosed by the x-axis and the curve $y = 3x\sqrt{1-x}$ is revolved about the y-axis to generate a solid. Find the volume of the reslted solid. (*Hint: use the shell method*)

b) Find the length of the curve of
$$y = \frac{2}{3}(x^2 + 1)^{\frac{3}{2}}$$
 from $x = 0$ to $x = 2$.

<u>Question 4</u> [12 marks]

Determine whether the following series is absolutely convergent (A.C.), conditionally convergent (C.C.), or divergent.

a)
$$\sum_{n=1}^{\infty} \frac{4 \tan^{-1} n}{n^2}$$
 b) $\sum_{n=2}^{\infty} (1 - \frac{1}{n})^n$
c) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$

Question 5: [8 marks]

Given the function $f(x) = \ln (2 - x)$.

a) Find a Maclaurin series for f(x).

b) Find the interval of convergence of the power series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} (1-x)^n$.

<u>Question 6:</u> [8 marks]

- a) Find a polar equation that has the same graph as the equation $x^2 = 8y$.
- b) Find the area of the region that lies inside the circle r = 1 and outside the cardiod $r = 1 \cos \theta$.