University of Bahrain
 College of Science
 Mathematics department
 First Semester 2003-2004

Final Examination
Math 211
Max. Mark: 50
Date: 18 / 01 / 2004
Time: 2 hours

Question 1: [5 marks]

Let t be a real number. Discuss the rank and the nullity of the following matrix:

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
t & 1 & 1 \\
1 & t & 2
\end{array}\right]
$$

Question 2: [3×4 marks]

Let $V=\mathrm{IR}^{3}$ be an inner product space with the following weighted inner product: If $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$, then $\prec u, v \succ=\frac{1}{p} u_{1} v_{1}+\frac{1}{p} u_{2} v_{2}+\frac{1}{p} u_{3} v_{3}$, where p is a fixed positive real number.
a) Find the angle θ between the vectors $u=(1,-1,1)$ and $v=(3,0,6)$.
b) Find k such that the vectors $u_{1}=(3,2 k, 9)$ and $v_{1}=\left(k^{2}, 3,-1\right)$ are orthogonal.
c) Find a basis of W^{\perp}, where W is the subspace of V spanned by the vector $w=(3,2,1)$.
d) Find two vectors of norm 1 that are orthogonal to the given vectors $u_{2}=(1,1,1)$ and $v_{2}=(0,1,1)$.

Question 3: [3×4 marks]

In the vector space $V=\mathrm{P}_{2}$, consider $B=\{1, X\}$ and $B^{\prime}=\{p=1-X, q=2-3 X\}$
a) Prove that B^{\prime} is a basis of V.
b) Find the transition matrix from B^{\prime} to B.
c) Find the transition matrix from B to B^{\prime}.
d) Find the coordinates of $2+X$ with respect to the basis B^{\prime}.

Question 4: [3×3 marks]

Consider the following matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 0 \\
2 & 0 & 1
\end{array}\right]
$$

a) Find the eigenvalues of A .
b) Find a basis for each eigenspace of A.
c) Is there an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix? Explain.

Question 5: \quad [3×4 marks]

Let $T: \mathrm{IR}^{2} \rightarrow \mathrm{IR}^{3}$ be the function defined by $T(x, y)=(x+y, 2 x, 3 y)$.
a) Show that T is a linear transformation.
b) Find the matrix of T with respect to the standard bases.
c) Find the kernel of T.
d) Find the range of T.

