University of Bahrain College of Science Mathematics department First Semester 2003-2004

Final Examination

Math 211 Date: 18 / 01 / 2004 Max. Mark: 50 Time: 2 hours

<u>Question 1:</u> [5 marks]

Let *t* be a real number. Discuss the rank and the nullity of the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 0 \\ t & 1 & 1 \\ 1 & t & 2 \end{bmatrix}$$

<u>Question 2:</u> $[3 \times 4 \text{ marks}]$

Let $V = IR^3$ be an inner product space with the following weighted inner product: If $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$, then $\prec u, v \succ = \frac{1}{p}u_1v_1 + \frac{1}{p}u_2v_2 + \frac{1}{p}u_3v_3$, where *p* is a fixed positive real number.

- **a**) Find the angle θ between the vectors u = (1, -1, 1) and v = (3, 0, 6).
- **b**) Find k such that the vectors $u_1 = (3, 2k, 9)$ and $v_1 = (k^2, 3, -1)$ are orthogonal.
- c) Find a basis of W^{\perp} , where W is the subspace of V spanned by the vector w = (3, 2, 1).
- **d**) Find two vectors of norm 1 that are orthogonal to the given vectors $u_2 = (1, 1, 1)$ and $v_2 = (0, 1, 1)$.

<u>Question 3</u>: $[3 \times 4 \text{ marks}]$

In the vector space $V = P_2$, consider $B = \{1, X\}$ and $B' = \{p = 1 - X, q = 2 - 3X\}$

- **a**) Prove that B' is a basis of V.
- **b**) Find the transition matrix from *B*' to *B*.
- c) Find the transition matrix from *B* to *B'*.
- **d**) Find the coordinates of 2 + X with respect to the basis B'.

<u>Question 4</u>: $[3 \times 3 \text{ marks}]$

Consider the following matrix

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

- **a**) Find the eigenvalues of A.
- **b**) Find a basis for each eigenspace of *A*.
- c) Is there an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix? Explain.

<u>Question 5</u>: $[3 \times 4 \text{ marks}]$

Let $T: \mathbb{IR}^2 \to \mathbb{IR}^3$ be the function defined by T(x, y) = (x + y, 2x, 3y).

- **a**) Show that *T* is a linear transformation.
- **b**) Find the matrix of *T* with respect to the standard bases.
- c) Find the kernel of *T*.
- **d**) Find the range of *T*.