University of Bahrain
College of Science
Mathematics department
Second Semester 2004-2005

Final Examination

Math 211
Duration: 2 hours
Date: $\mathbf{1 5}^{\text {th }}$ Jun, 2005
Max. Mark: 50

Name:	I.D.No:	Section:

Marking Scheme

Questions	Max. Mark	Mark. Obtained
$\mathbf{1}$	12	
2	12	
3	12	
4	14	
Total	50	

Question 1: [12 marks]

a) Let $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & a^{2}-5\end{array}\right]$. Determine when A^{-1} exists.
b) Prove that $H=\left\{p \in P_{2}: p(1)=2 p(0)\right\}$ is a subspace of P_{2}.
c) Let $H=\operatorname{Span}\{(1,1,0),(1,0,1)\}$. Find m if the vector $v=(m,-(1+m),-m)$ belongs to H.

Question 2: [12 marks]

In the vector space $V=\mathrm{P}_{2}$, consider $B=\{1, X\}$ and $B^{\prime}=\{p=2-X, q=1-2 X\}$
a) Prove that B^{\prime} is a basis of V.
b) Find the transition matrix from B^{\prime} to B.
c) Find the transition matrix from B to B^{\prime}.
d) Find the coordinates of $2+X$ with respect to the basis B^{\prime}.

Question 3: [12 marks]

Let $T: \mathrm{IR}^{2} \rightarrow \mathrm{IR}^{3}$ be the function defined by $T(x, y)=(2 x-y, 4 x, y)$.
a) Show that T is a linear transformation.
b) Find the kernel of T.
c) Find the range of T.

Question 4: [14 marks]

Consider the following matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 0 \\
3 & 0 & 1
\end{array}\right]
$$

a) Find the eigenvalues of A.
b) Find a basis for each eigenspace of A.
c) Is there an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix? Explain.

