University of Bahrain College of Science Mathematics department Second Semester 2004-2005

Final Examination

Math 211 Duration: 2 hours Date: 15th Jun, 2005 Max. Mark: 50

Name: I	<u>I.D.No:</u>	Section:
---------	----------------	----------

Marking Scheme

Questions	Max. Mark	Mark. Obtained
1	12	
2	12	
3	12	
4	14	
Total	50	

Question 1: [12 marks]

a) Let
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & a^2 - 5 \end{bmatrix}$$
. Determine when A^{-1} exists.

- **b**) Prove that $H = \{ p \in P_2 : p(1) = 2 p(0) \}$ is a subspace of P_2 .
- c) Let $H = \text{Span}\{(1,1,0), (1,0,1)\}$. Find *m* if the vector v = (m, -(1+m), -m) belongs to *H*.

Question 2: [12 marks]

In the vector space $V = \mathbf{P}_2$, consider $B = \{1, X\}$ and $B' = \{p = 2 - X, q = 1 - 2X\}$

- **a**) Prove that B' is a basis of V.
- **b**) Find the transition matrix from B' to B.
- c) Find the transition matrix from B to B'.
- **d**) Find the coordinates of 2 + X with respect to the basis *B*'.

<u>Question 3</u>: [12 marks]

Let $T: \mathbb{IR}^2 \to \mathbb{IR}^3$ be the function defined by T(x, y) = (2x - y, 4x, y).

- **a**) Show that *T* is a linear transformation.
- **b**) Find the kernel of *T*.
- c) Find the range of T.

<u>Question 4</u>: [14 marks]

Consider the following matrix

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

- **a**) Find the eigenvalues of *A*.
- **b**) Find a basis for each eigenspace of *A*.
- c) Is there an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix? Explain.