University of Bahrain College of Science Mathematics department First Semester 2006-2007

Final Examination

Math 211 Duration: 2 hours Date: 22 / 01 / 2007 Max. Mark: 50

Name:

ID Number:

Section:

Instructions:

- 1) Please check that this test has 5 questions and 7 pages.
- 2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained		
1	10			
2	9			
3	9			
4	8			
5	14			
Total	50			

Good Luck

Question 1: [10 marks]

Fill in the blanks to make a correct statement:

a) In any vector space V, if ku = 0, then _____

b) In a vector space V if w = u - 2v, then $\{u, v, w\}$ is _____

c) If $S = \{p_1, p_2, p_3\}$ is linearly independent in P_2 , then _____

d) If $\mathbb{R}^3 = \text{Span}\{(2, 3, t), (1, 1, 2), (1, 0, 0)\}$, then $t \neq$ ______

e) If A is 2×2 invertible matrix and m > 0 such that det $[(mAA^T)(mA)^{-2}] = 4$, then

m =_____

f) If A is a 3×2 matrix and B is a 3×3 matrix, then the size of $(AA^T + B)A^T$ is _____

g) If *A* is a 5×4 matrix, then the largest possible value of rank(*A*) is______

h) Suppose that $(p)_B = (-1, -2, 3)$ where $B = \{1 + x, -x^2, x + x^2\}$ is a basis of P₂, then

p = _____.

i) If $det(\lambda I - A) = \lambda^5 - \lambda^4 + \lambda^3 - 5$, then det(A) =_____

j) If $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 2 & 2 & 2 \end{bmatrix}$, then a basis for the column space of A is _____

Question 2: [3+3+3 marks]

a) Prove that if A and B are two matrices of size 2×2 , then

tr(AB) = tr(BA) and det(AB) = det(BA).

b) Let *A* and *B* be two matrices of size 2×2 . If $AB = \begin{bmatrix} x & 2 \\ 8 & y \end{bmatrix}$ and $BA = \begin{bmatrix} 3 & 4 \\ 13 & 12 \end{bmatrix}$, find *x* and *y*.

c) Prove that $H = \{A \in M_{22} : tr(A) = 0\}$ is a subspace of M_{22} and find its dimension. (Hint: If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then tr(A) = a + d)

<u>Question 3</u>: [3+3+3 marks]

Let V be a vector space of dimension 4, and $B = \{u_1, u_2, u_3, u_4\}$ be a basis of V. Define

 $u = u_1 + u_2$; $v = u_2 + u_3$; $w = u_3 + u_4$.

a) Prove that $S = \{u, v, w, u_4\}$ is a basis of V.

b) Find the coordinates of the vector u_3 relative to the basis *S*.

c) Is $\{u, v, 2w, v-w\}$ a basis of V?

<u>Question 4</u>: [4 + 4 marks]

Let $H = \text{Span}\{v_1, v_2, v_3, v_4\}$, where $v_1 = (1,1,1)$; $v_2 = (1,s,1)$; $v_3 = (s,1,1)$; $v_4 = (1,2,1)$.

a) Discuss dim*H* according to the value of *s*, and find a basis of each case.

b) For s = 3, find a basis *S* of *H* consisting of vectors from v_1 , v_2 , v_3 , v_4 . Then write the vectors not in the basis *S* as linear combination of those in *S*.

<u>Question 5</u>: [3 + 4 + 3 + 4 marks]

			0]	
Consider the following matrix $A =$	0	3	-2	
	0	-2	3	

- **a**) Find the eigenvalues of *A*.
- **b**) Find a basis for each eigenspace of *A*.
- c) Is there an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix? Explain.
- **d**) Find A^n for every positive integer *n*.