University of Bahrain College of Science Mathematics department Second Semester 2006-2007

Final Examination

Math 211 Duration: 2 hours Date: 14 / 06 / 2007 Max. Mark: 50

Name:

ID Number:

Section:

Instructions:

- 1) Please check that this test has 5 questions and 7 pages.
- 2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
1	15	
2	9	
3	6	
4	8	
5	12	
Total	50	

Good Luck

<u>Question 1:</u> [1.5 × 10 marks]

Answer each of the following statements by **true** or **false**, then **justify** briefly your answers:

a) In any vector space V, if au = bu, then a = b.

b) In a vector space V, if $w \in \text{Span}\{u, v\}$, then $\{u, v, w\}$ is linearly dependent.

c) If A is a $n \times 2n$ matrix such that rank(A) = n, then nullity $(A^{T}) = 0$.

d) If t = 0, then $S = \{(1, 2, 1), (-1, 1, 0), (1, -1, t)\}$ is a basis of **R**³.

e) If A and B are $n \times n$ matrices and det(A) = det(B) = 1, then det $[2(AA^T)(2B)^{-2}] = 2^{-n}$.

f) If A is a 3×4 matrix and B is a 4×3 matrix, then the size of $(AA^T)^2 + (AB)^2$ is 3×3 .

g) If *A* is a 6×4 matrix and nullity(*A*) = 0, then nullity(A^T) = 2.

h) If
$$A = \begin{bmatrix} \cos(x) & \sin(x) \\ -\sin(x) & \cos(x) \end{bmatrix}$$
, then $\lambda = 0$ is an eigenvalue of A.

i) If the characteristic polynomial of A is $P_A = (\lambda - 1)^5 (\lambda - 2)^4 (\lambda + 5)^2$, then det(A) = 400.

j) If
$$A = \begin{bmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix}$$
, then rank $(A) = 1$.

<u>Question 2:</u> [5+4 marks]

- a) Prove that $H = \{M \in \mathbf{M}_{22} : M^T = -M\}$ is a subspace of \mathbf{M}_{22} and find its dimension.
- **b**) Find a diagonal matrix X such that $AX^2 + BX + C = O$, where

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad , \quad B = \begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix} , \quad C = \begin{bmatrix} 0 & -2 \\ -1 & 0 \end{bmatrix} , \quad O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

<u>Question 3</u>: [3 + 3 marks]

a) Solve
$$\begin{vmatrix} 1+x & x & 0\\ 1 & 1+x & x\\ 0 & 1 & 1+x \end{vmatrix} = 0.$$

b) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 0 & 0\\ 0 & a & 1\\ a & 1 & 0 \end{bmatrix}.$

<u>Question 4</u>: [2+3+3 marks]

Consider the bases $B = \{u_1, u_2\}$ and $B' = \{v_1, v_2\}$ of the real vector space \mathbf{R}^2 , where

 $u_1 = (0, 1)$, $u_2 = (1, 1)$, $v_1 = (1, 0)$, $v_2 = (-1, 2)$

- (i) Find the transition matrix from B' to B.
- (ii) Find the transition matrix from B to B'.
- (iii) Find the coordinate vector of w = (2, 4) relative to the basis B'.

<u>Question 5</u>: [3+3+3+3 marks]

Consider the following matrix $A = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$

- **a**) Find the eigenvalues of *A*. Is A diagonalizable?
- **b**) Find a basis for each eigenspace of *A*.
- c) Find A^n for every positive integer *n*.
- **d**) Let u_n and v_n be two sequences such that $u_o = 0$ and $v_o = 1$, and

$$u_n = 3 u_{n-1} + 2 v_{n-1}$$
$$v_n = 1 u_{n-1} + 2 v_{n-1}$$

Let $X_n = \begin{bmatrix} u_n \\ v_n \end{bmatrix}$, prove that $X_n = A X_{n-1}$ and $X_n = A^n X_o$, then find u_n and v_n .