University of Bahrain
College of Science
Mathematics department
Second Semester 2006-2007

Final Examination

Math 211
Duration: 2 hours
Date: 14 / 06 / 2007
Max. Mark: 50
Name:
ID Number:
Section:

Instructions:

1) Please check that this test has 5 questions and 7 pages.
2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
$\mathbf{1}$	15	
2	9	
3	6	
4	$\mathbf{8}$	
5	12	
Total	50	

Good Luck

Question 1: [1.5 $\times 10 \mathrm{marks}]$

Answer each of the following statements by true or false, then justify briefly your answers:
a) In any vector space V, if $a u=b u$, then $a=b$.
b) In a vector space V, if $w \in \operatorname{Span}\{u, v\}$, then $\{u, v, w\}$ is linearly dependent.
c) If A is $a n \times 2 n$ matrix such that $\operatorname{rank}(A)=n$, then nullity $\left(A^{T}\right)=0$.
d) If $t=0$, then $S=\{(1,2,1),(-1,1,0),(1,-1, t)\}$ is a basis of \mathbf{R}^{3}.
e) If A and B are $n \times n$ matrices and $\operatorname{det}(A)=\operatorname{det}(B)=1$, then $\operatorname{det}\left[2\left(A A^{T}\right)(2 B)^{-2}\right]=2^{-n}$.
f) If A is a 3×4 matrix and B is a 4×3 matrix, then the size of $\left(A A^{T}\right)^{2}+(A B)^{2}$ is 3×3.
g) If A is a 6×4 matrix and $\operatorname{nullity}(A)=0$, then $\operatorname{nullity}\left(A^{T}\right)=2$.
h) If $A=\left[\begin{array}{cc}\cos (x) & \sin (x) \\ -\sin (x) & \cos (x)\end{array}\right]$, then $\lambda=0$ is an eigenvalue of A.
i) If the characteristic polynomial of A is $P_{A}=(\lambda-1)^{5}(\lambda-2)^{4}(\lambda+5)^{2}$, then $\operatorname{det}(A)=400$.
j) If $A=\left[\begin{array}{lll}a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a\end{array}\right]$, then $\operatorname{rank}(A)=1$.

Question 2: [5 + 4 marks]

a) Prove that $H=\left\{M \in \mathrm{M}_{22}: M^{T}=-M\right\}$ is a subspace of M_{22} and find its dimension.
b) Find a diagonal matrix X such that $A X^{2}+B X+C=O$, where

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad B=\left[\begin{array}{cc}
0 & -1 \\
2 & 0
\end{array}\right], \quad C=\left[\begin{array}{cc}
0 & -2 \\
-1 & 0
\end{array}\right], \quad O=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Question 3: [3 + 3 marks]
a) Solve $\left|\begin{array}{ccc}1+x & x & 0 \\ 1 & 1+x & x \\ 0 & 1 & 1+x\end{array}\right|=0$.
b) Find the inverse of the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & a & 1 \\ a & 1 & 0\end{array}\right]$.

Question 4: $\quad[2+3+3$ marks]

Consider the bases $B=\left\{u_{1}, u_{2}\right\}$ and $B^{\prime}=\left\{v_{1}, v_{2}\right\}$ of the real vector space \mathbf{R}^{2}, where

$$
u_{1}=(0,1) \quad, \quad u_{2}=(1,1) \quad, \quad v_{1}=(1,0) \quad, \quad v_{2}=(-1,2)
$$

(i) Find the transition matrix from B^{\prime} to B.
(ii) Find the transition matrix from B to B^{\prime}.
(iii) Find the coordinate vector of $w=(2,4)$ relative to the basis B^{\prime}.

Question 5: $\quad[3+3+3+3$ marks]

Consider the following matrix $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right]$
a) Find the eigenvalues of A. Is A diagonalizable?
b) Find a basis for each eigenspace of A.
c) Find A^{n} for every positive integer n.
d) Let u_{n} and v_{n} be two sequences such that $u_{o}=0$ and $v_{o}=1$, and

$$
\begin{aligned}
& u_{n}=3 u_{n-1}+2 v_{n-1} \\
& v_{n}=1 u_{n-1}+2 v_{n-1}
\end{aligned}
$$

Let $X_{n}=\left[\begin{array}{l}u_{n} \\ v_{n}\end{array}\right]$, prove that $X_{n}=A X_{n-1}$ and $X_{n}=A^{n} X_{o}$, then find u_{n} and v_{n}.

