University of Bahrain College of Science Mathematics department Second Semester 2007-2008

Final Examination

Math 211 Duration: 2 hours Date: 16 / 06 / 2007 Max. Mark: 50

Name:

ID Number:

Section:

Instructions:

- 1) Please check that this test has 6 questions and 7 pages.
- 2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
1	9	
2	8	
3	9	
4	9	
5	8	
6	7	
Total	50	

Good Luck

<u>Question 1:</u> [9 marks]

a) Determine the determinant of a 3×3 matrix A such that $A^{-1} = 2A^{T}$.

b) Find the rank of a matrix A of size $(n+1) \times n$ such that $\text{Nullity}(A^T) = 2$ Nullity(A).

d) Let V be an inner product space V and u, v, w three nonzero vectors of V. Prove that, if $\langle u, v \rangle = \langle u, w \rangle = \langle v, w \rangle = 0$, then $\{u, v, w\}$ is linearly independent.

<u>Question 2:</u> [4 + 4 marks]

a) Prove that $H = \{ p \in P_2 : p(1) + p'(1) = 0 \}$ is a subspace of P_2 and find its dimension.

b) Let *A* be a 2 × 2 matrix whose eigenvalues are 1 and -1. Show that there is a 2 × 2 invertible matrix *P* such that $P^{-1}AP = D$ is a diagonal matrix. Then prove that $A^{-1} = A$.

<u>Question 3</u> [9 marks]

Let $V = \text{Span}\{f_1, f_2, f_3\}$, where $f_1 = 1$, $f_2 = e^x$, $f_3 = x e^x$.

- **a)** Prove that $S = \{f_1, f_2, f_3\}$ is a basis of V.
- **b**) Find the coordinates of $4 + (2 3x)e^x$ with respect to *S*.
- c) Is $\{f_1, f_2, f_3, 1 + e^x\}$ a linearly independent set of V?

Question 4 [6+3 marks]

1) Let V be an inner product space and u, v are two nonzero vectors of V such that ||u|| = ||v|| = h. Let θ be the angle between u and v, and $w = \frac{1}{2}(u+v)$. Then

- **a)** Find $\langle u, w \rangle$ and ||w|| as a function of h and θ .
- **b**) Find the angle θ' between *u* and *w* as a function of θ .

2) Let A be a square matrix such that $A^2 = A$. Show that 0 and 1 are only the possible eigenvalues of A.

Question 5 [8 marks]

Let *W* be the subspace of \mathbf{R}^4 generated by u = (1, 2, 3) and v = (2, 4, 2).

- **a**) Find a basis of the orthogonal complement W^{\perp} of W.
- **b**) Find two vectors of norm 1 that are orthogonal to u and v.

Question 6[7 marks]Let $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & a \end{bmatrix}$. Find the eigenvalues of A and discuss whether A is diagonalizable as

a varies.