University of Bahrain
College of Science
Mathematics department
Second Semester 2007-2008

Final Examination

Math 211
Duration: 2 hours
Date: 16 / 06 / 2007
Max. Mark: 50
Name:
ID Number:
Section:

Instructions:

1) Please check that this test has 6 questions and 7 pages.
2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
$\mathbf{1}$	9	
2	8	
3	9	
4	9	
5	7	
6	50	
Total		

Good Luck

Question 1: [9 marks]

a) Determine the determinant of a 3×3 matrix A such that $A^{-1}=2 A^{T}$.
b) Find the rank of a matrix A of size $(n+1) \times n$ such that $\operatorname{Nullity}\left(A^{T}\right)=2 \operatorname{Nullity}(A)$.
d) Let V be an inner product space V and u, v, w three nonzero vectors of V. Prove that, if $\langle u, v\rangle=\langle u, w\rangle=\langle v, w\rangle=0$, then $\{u, v, w\}$ is linearly independent.

Question 2: [4 + 4 marks]

a) Prove that $H=\left\{p \in \mathrm{P}_{2}: p(1)+p^{\prime}(1)=0\right\}$ is a subspace of P_{2} and find its dimension.
b) Let A be a 2×2 matrix whose eigenvalues are 1 and -1 . Show that there is a 2×2 invertible matrix P such that $P^{-1} A P=D$ is a diagonal matrix. Then prove that $A^{-1}=A$.

Question 3 [9 marks]

Let $V=\operatorname{Span}\left\{f_{1}, f_{2}, f_{3}\right\}$, where $f_{1}=1, \quad f_{2}=\mathrm{e}^{x}, \quad f_{3}=x \mathrm{e}^{x}$.
a) Prove that $S=\left\{f_{1}, f_{2}, f_{3}\right\}$ is a basis of V.
b) Find the coordinates of $4+(2-3 x) \mathrm{e}^{x}$ with respect to S.
c) Is $\left\{f_{1}, f_{2}, f_{3}, 1+e^{x}\right\}$ a linearly independent set of V ?

Question 4 [$6+3$ marks]

1) Let V be an inner product space and u, v are two nonzero vectors of V such that $\|u\|=\|v\|=h$. Let θ be the angle between u and v, and $w=\frac{1}{2}(u+v)$. Then
a) Find $\langle u, \mathrm{w}\rangle$ and $\|w\|$ as a function of h and θ.
b) Find the angle θ^{\prime} between u and w as a function of θ.
2) Let A be a square matrix such that $A^{2}=A$. Show that 0 and 1 are only the possible eigenvalues of A.

Question 5 [8 marks]

Let W be the subspace of \mathbf{R}^{4} generated by $u=(1,2,3)$ and $v=(2,4,2)$.
a) Find a basis of the orthogonal complement W^{\perp} of W.
b) Find two vectors of norm 1 that are orthogonal to u and v.

Question 6 [7 marks]

Let $A=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & a\end{array}\right]$. Find the eigenvalues of A and discuss whether A is diagonalizable as a varies.

