University of Bahrain
College of Science
Mathematics department
First Semester 2009

Final Examination

Math 211
Duration: 2 hours
Date: 22 / 01 / 2009
Max. Mark: 50

Name:

ID Number:

Section:

Instructions:

1) Please check that this test has 6 questions and 8 pages.
2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
$\mathbf{1}$	$\mathbf{8}$	
2	6	
3	$\mathbf{6}$	
4	10	
$\mathbf{5}$	10	
6	$\mathbf{5 0}$	
Total		

Good Luck

Question 1: [8 marks]

In each question, only one statement is true, circle the right statement.
(i) If A is 4×4 matrix, and nullity $(A)=2$, then
a) The reduced row-echelon form of A is $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
b) Column-vectors of A are linearly independent.
c) $A X=O$ has only the trivial solution.
d) $\operatorname{Rank}\left(A^{T}\right)=3$.
e) $\operatorname{Nullity}\left(A^{T}\right)=2$.
(ii) Let T_{A} be the linear transformation, multiplication by $A=\left[\begin{array}{cccc}1 & 2 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ -2 & -4 & 3 & 1\end{array}\right]$
a) $\operatorname{dim} \operatorname{Im}\left(T_{A}\right)=2$.
b) $\operatorname{dim} \operatorname{Ker}\left(T_{A}\right)=1$.
c) $T_{A}(1,-1,1,-1)=(0,1,2)$.
d) $(1,2,3,4) \in \operatorname{Ker}\left(T_{A}\right)$.
e) $\operatorname{dim} \operatorname{Im}\left(T_{A}\right)+\operatorname{dim} \operatorname{Ker}\left(T_{A}\right)=3$
(iii) If the characteristic polynomial of a matrix A is $P_{A}=\lambda^{2}(\lambda-1)(\lambda+1)^{2}(\lambda-3)$, then
a) A is invertible.
b) $\operatorname{det}(A)=-3$.
c) A is of size 5×5.
d) $A X=O$ has infinitely many solutions.
e) The dimension of the eigenspace corresponding to $\lambda=1$ is 2 .
(vi) If V is a vector space with a basis $B=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, then
a) $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent.
b) $\left\{v_{1}, v_{2}, v_{3}\right\}$ spans V.
c) $v_{1} \notin \operatorname{Span}\left\{v_{2}, v_{3}, v_{4}\right\}$.
d) $\left\{v_{1}, v_{2}, v_{3}, v_{1}+v_{3}\right\}$ is a basis of V.
e) $\left(v_{1}+v_{2}+v_{3}\right)_{B}=(1,0,1,1)$.

Question 2: [6 marks]

Show that the following system has a unique solution, then solve it by inverting the coefficient matrix

$$
\begin{aligned}
& x+2 y+z=1 \\
& x+2 y+2 z=1 \\
& x+3 y+a z=2
\end{aligned}
$$

Question 3: [3 + 3 marks]

Let $A=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right), B=\left(\begin{array}{cc}1 & -1 \\ 4 & 3\end{array}\right)$ and $C=\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)$.
a) Does $C \in \operatorname{Span}\{A, B\}$?
b) Let $T: \mathrm{M}_{22} \rightarrow \mathbb{R}$ be a linear transformation such that $T(A)=1$ and $T(B)=1$. Show that $C \in \operatorname{Ker}(T)$.

Question 4 [10 marks]

A square matrix A is said to be orthogonal if $A A^{T}=I$.
a) Show that every orthogonal matrix is invertible.
b) Show that $A=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$ is an orthogonal matrix.
c) Prove that, if A and B are two orthogonal matrices, then $A B$ is an orthogonal matrix.
d) Prove that, if $A=P D P^{-1}$, where P is an orthogonal matrix and D is a diagonal matrix, then $A^{T}=A$.

Question 5 [10 marks]

Let $T: \mathrm{P}_{2} \rightarrow \mathrm{P}_{1}$ be a linear transformation defined as

$$
T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left(a_{0}+a_{1}\right)+\left(a_{1}+a_{2}\right) x
$$

a) Show that T is a linear transformation.
b) Is $1+x \in \mathrm{R}(T)$?
c) Is $q=1+2 x-2 x^{2} \in \operatorname{Ker}(T)$?
d) Find a basis of $\operatorname{Ker}(T)$.
e) Find the rank and the nullity of T.

Question 6: [2+5+5 marks]

Consider the following matrix $A=\left[\begin{array}{cc}a & -1 \\ -1 & a\end{array}\right]$
a) Find the eigenvalues of A.
b) Find a basis for each eigenspace of A, and conclude that A is diagonalizable.
c) Find A^{n} for every positive integer n.

