University of Bahrain College of Science Mathematics department First Semester 2009

Final Examination

Math 211 Duration: 2 hours Date: 22 / 01 / 2009 Max. Mark: 50

Name:

ID Number:

Section:

Instructions:

- 1) Please check that this test has 6 questions and 8 pages.
- 2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
1	8	
2	6	
3	6	
4	10	
5	10	
6	10	
Total	50	

Good Luck

Question 1: [8 marks]

In each question, **only one** statement is **true**, circle the **right** statement.

(i) If A is 4×4 matrix, and nullity(A) = 2, then

a) The reduced row-echelon form of A is
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
.

- b) Column-vectors of A are linearly independent.
- c) AX = O has only the trivial solution.
- d) Rank(A^T) = 3.
- e) Nullity $(A^T) = 2$.

(ii) Let T_A be the linear transformation, multiplication by $A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ -2 & -4 & 3 & 1 \end{bmatrix}$

- a) dim $\text{Im}(T_A) = 2$.
- b) dim $\operatorname{Ker}(T_A) = 1$.
- c) $T_A(1,-1,1,-1) = (0,1,2).$
- d) $(1,2,3,4) \in \text{Ker}(T_A)$.
- e) dim $\text{Im}(T_A)$ + dim $\text{Ker}(T_A) = 3$

(iii) If the characteristic polynomial of a matrix A is $P_A = \lambda^2 (\lambda - 1) (\lambda + 1)^2 (\lambda - 3)$, then

- a) A is invertible.
- b) det(A) = -3.
- c) A is of size 5×5 .
- d) A X = O has infinitely many solutions.
- e) The dimension of the eigenspace corresponding to $\lambda = 1$ is 2.

- (vi) If V is a vector space with a basis $B = \{v_1, v_2, v_3, v_4\}$, then
 - a) { v_1 , v_2 , v_3 } is linearly dependent.
 - b) { v_1 , v_2 , v_3 } spans V.
 - c) $v_1 \notin \text{Span}\{v_2, v_3, v_4\}.$
 - d) { v_1 , v_2 , v_3 , $v_1 + v_3$ } is a basis of V.
 - e) $(v_1 + v_2 + v_3)_B = (1, 0, 1, 1)$.

<u>Question 2:</u> [6 marks]

Show that the following system has a unique solution, then solve it by inverting the coefficient matrix

$$x + 2y + z = 1$$

$$x + 2y + 2z = 1$$

$$x + 3y + az = 2$$

<u>Question 3:</u> [3+3 marks]

Let
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ 4 & 3 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$.

a) Does $C \in Span \{A, B\}$?

b) Let $T: M_{22} \to \mathbb{R}$ be a linear transformation such that T(A) = 1 and T(B) = 1. Show that $C \in \text{Ker}(T)$.

<u>Question 4</u> [10 marks]

A square matrix A is said to be **orthogonal** if $AA^{T} = I$.

a) Show that every orthogonal matrix is invertible.

b) Show that $A = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is an orthogonal matrix.

c) Prove that, if A and B are two orthogonal matrices, then AB is an orthogonal matrix.

d) Prove that, if $A = P D P^{-1}$, where *P* is an orthogonal matrix and *D* is a diagonal matrix, then $A^T = A$.

<u>Question 5</u> [10 marks]

Let $T: \mathbf{P}_2 \to \mathbf{P}_1$ be a linear transformation defined as

$$T(a_0 + a_1 x + a_2 x^2) = (a_0 + a_1) + (a_1 + a_2) x$$

- **a**) Show that *T* is a linear transformation.
- **b**) Is $1 + x \in \mathbf{R}(T)$?
- c) Is $q = 1 + 2x 2x^2 \in \text{Ker}(T)$?
- **d**) Find a basis of Ker(T).
- e) Find the rank and the nullity of *T*.

<u>Question 6:</u> [2+5+5 marks]

Consider the following matrix $A = \begin{bmatrix} a & -1 \\ -1 & a \end{bmatrix}$

- **a**) Find the eigenvalues of *A*.
- **b**) Find a basis for each eigenspace of *A*, and conclude that *A* is diagonalizable.
- c) Find A^n for every positive integer *n*.