University of Bahrain
College of Science
Mathematics department
Summer Semester 2008

Final Examination (2)

Math 211
Duration: 2 hours
Date: 25 / 06 / 2007
Max. Mark: 50

Name:

ID Number:

Section:

Instructions:

1) Please check that this test has 7 questions and 9 pages.
2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
1	9	
2	5	
3	6	
4	11	
5	6	
6	4	50
7	9	
Total		9

Good Luck

Question 1: [3+3+3 marks]

Consider the following matrix $A=\left[\begin{array}{cc}5 & -3 \\ 1 & 1\end{array}\right]$
a) Find the eigenvalues of A.
b) Find a basis for each eigenspace of A.
c) Find A^{n} for every positive integer n.

Question 2: [5 marks]

Solve the following system by inverting the coefficient matrix

$$
\begin{array}{ll}
x+2 y+z & =3 \\
x-y+z & =1 \\
x+y & =2
\end{array}
$$

Question 3 [3+3 marks]

a) Find a diagonal matrix X such that $A X^{2}+B X+C=O$, where

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad B=\left[\begin{array}{cc}
0 & -1 \\
2 & 0
\end{array}\right], \quad C=\left[\begin{array}{cc}
0 & -2 \\
-1 & 0
\end{array}\right], \quad O=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

b) Show that every vector $(x, y, z) \in \operatorname{Span}\{(-1,1,-1),(-1,3,2)\}$ solves the equation $5 x+3 y-2 z=0$.

Question 4 [2+3+3+3 marks]

Let $T: \mathrm{P}_{2} \rightarrow \mathrm{P}_{3}$ be a linear transformation defined as
$T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left(a_{1}+a_{2}\right) x+\left(2 a_{1}+2 a_{2}\right) x^{2}+\left(3 a_{1}+3 a_{2}\right) x^{3}$
a) Is $x+2 x^{2}+4 x^{3} \in \mathrm{R}(T)$?
b) Find a basis of $\operatorname{Ker}(T)$.
c) Find a basis of $\mathrm{R}(T)$.
d) If $B=\left\{1, x, x^{2}\right\}$ is a basis of P_{2} and $B^{\prime}=\left\{1, x, x^{2}, x^{3}\right\}$ is a basis of P_{3}, find the matrix of T with respect to the bases B and B^{\prime}.

Question 5: [$3+3$ marks]
a) Let B be a basis of P_{1}. If $(2-x)_{B}=(1,2)$ and $(4-5 x)_{B}=(-1,1)$, find the basis B.
b) Let $T: \mathrm{R}^{3} \rightarrow \mathrm{R}$ be a linear transformation with $T[(2,3,1)]=4$ and $T[(4,1,3)]=7$.

Find $T[(2,-7,3)] \quad($ Hint: $\quad(2,-7,3) \in \operatorname{Span}\{(2,3,1),(4,1,3)\})$

Question 6: [6×1.5 marks]

Complete the following statements:
(i) Let $A=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & k\end{array}\right]$. If A satisfies $A A^{T}=I$, then $k=$
(ii) If V is the subspace of M_{22} that consists of all matrices of the form $\left[\begin{array}{cc}a & a+b \\ a-2 b & d\end{array}\right]$, then $\operatorname{dim}(V)=$ \qquad
(iii) If $\mathbf{- 1}$ and $\mathbf{3}$ are the eigenvalues of a matrix A, then the eigenvalues of A^{4} are \qquad
(iv) If A is a 4×6 matrix, then the smallest possible value for the nullity of A is \qquad
(v) If $A=A^{3}$, then the possible eigenvalues of A are \qquad
(vi) If the matrix $\left[\begin{array}{ll}1 & a \\ 1 & 5\end{array}\right]$ has only one eigenvalue, then $a=$ \qquad

Question 7: [4 marks]

In each question, only one statement is false, circle the false statement.
(i) If the characteristic polynomial of a matrix A is $P_{A}=(\lambda-1)(\lambda+2)^{2}(\lambda-5)$, then
a) A is invertible.
b) $\operatorname{det}(A)=-20$.
c) A is of size 4×4.
d) $A X=O$ has infinite solutions.
e) A is diagonalizable only if the dimension of the eigenspace corresponding to $\lambda=-2$ is 2
(ii) If the dimension of a vector space V is n, then
a) Any set of more than n vectors in V is linearly dependent.
b) Any set of less than n vectors in V does not span V.
c) Any linearly independent set of n vectors in V is a basis of V.
d) Any set of n vectors in V that contains the zero vector can not span V.
e) Only if B is a basis, any vector u in V can be written as a linear combination of a set of vectors of B.
(iii) Given the matrix $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & -1 & 0 \\ -1 & 0 & 2\end{array}\right]$
a) The eigenvalues of A are $1,-1,2$.
b) A is diagonalizable.
c) $\operatorname{det}(A)=-2$.
d) $\operatorname{rank}(A)<3$.
e) The sum of dimensions of all eigenspaces of A is 3 .
(vi) If A is 4×5 matrix, and $\operatorname{rank}(A)=4$, then
a) Row-vectors of A are linearly independent.
b) Column-vectors of A are linearly independent.
c) $A X=O$ has infinite solutions.
d) $\operatorname{Nullity}(A)=1$.
e) $\operatorname{Nullity}\left(A^{T}\right)=0$.

