University of Bahrain College of Science Mathematics department Summer Semester 2008

Final Examination (2)

Math 211 Duration: 2 hours Date: 25 / 06 / 2007 Max. Mark: 50

Name:

ID Number:

Section:

Instructions:

- 1) Please check that this test has 7 questions and 9 pages.
- 2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
1	9	
2	5	
3	6	
4	11	
5	6	
6	9	
7	4	
Total	50	

Good Luck

<u>Question 1:</u> [3+3+3 marks]

Consider the following matrix $A = \begin{bmatrix} 5 & -3 \\ 1 & 1 \end{bmatrix}$

- **a**) Find the eigenvalues of *A*.
- **b**) Find a basis for each eigenspace of *A*.
- c) Find A^n for every positive integer *n*.

<u>Question 2:</u> [5 marks]

Solve the following system by inverting the coefficient matrix

$$x + 2y + z = 3$$

 $x - y + z = 1$
 $x + y = 2$

Question 3 [3+3 marks]

a) Find a **diagonal** matrix X such that $AX^2 + BX + C = O$, where

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & -2 \\ -1 & 0 \end{bmatrix}, \quad O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

b) Show that every vector $(x, y, z) \in \text{Span}\{(-1, 1, -1), (-1, 3, 2)\}$ solves the equation 5x + 3y - 2z = 0.

<u>Question 4</u> [2+3+3+3 marks]

Let $T: \mathbf{P}_2 \to \mathbf{P}_3$ be a linear transformation defined as

$$T(a_0 + a_1 x + a_2 x^2) = (a_1 + a_2) x + (2 a_1 + 2 a_2) x^2 + (3 a_1 + 3 a_2) x^3$$

- **a)** Is $x + 2x^2 + 4x^3 \in \mathbf{R}(T)$?
- **b**) Find a basis of Ker(T).
- c) Find a basis of R(T).

d) If $B = \{1, x, x^2\}$ is a basis of P_2 and $B' = \{1, x, x^2, x^3\}$ is a basis of P_3 , find the matrix of *T* with respect to the bases *B* and *B'*.

Question 5: [3+3 marks]

a) Let B be a basis of P₁. If $(2 - x)_B = (1, 2)$ and $(4 - 5x)_B = (-1, 1)$, find the basis B.

b) Let $T : \mathbb{R}^3 \to \mathbb{R}$ be a linear transformation with T[(2, 3, 1)] = 4 and T[(4, 1, 3)] = 7. Find T[(2, -7, 3)] (Hint: $(2, -7, 3) \in \text{Span}\{(2, 3, 1), (4, 1, 3)\}$)

Question 6: [6×1.5 marks]

Complete the following statements:

(i) Let $A = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & k \end{bmatrix}$. If A satisfies $AA^T = I$, then k =______

(ii) If *V* is the subspace of M₂₂ that consists of all matrices of the form $\begin{bmatrix} a & a+b \\ a-2b & d \end{bmatrix}$, then dim(*V*) = _____

(iii) If -1 and 3 are the eigenvalues of a matrix A, then the eigenvalues of A^4 are _____

(iv) If A is a 4×6 matrix, then the smallest possible value for the nullity of A is _____

(v) If $A = A^3$, then the possible eigenvalues of A are _____

(vi) If the matrix $\begin{bmatrix} 1 & a \\ 1 & 5 \end{bmatrix}$ has only one eigenvalue, then a =_____

Question 7: [4 marks]

In each question, only one statement is false, circle the false statement.

- (i) If the characteristic polynomial of a matrix A is $P_A = (\lambda 1)(\lambda + 2)^2(\lambda 5)$, then
 - a) *A* is invertible.
 - b) det(A) = -20.
 - c) A is of size 4×4 .
 - d) A X = O has infinite solutions.
 - e) A is diagonalizable only if the dimension of the eigenspace corresponding to
 - $\lambda = -2$ is 2

(ii) If the dimension of a vector space V is n, then

- a) Any set of more than *n* vectors in *V* is linearly dependent.
- b) Any set of less than *n* vectors in *V* does not span *V*.
- c) Any linearly independent set of *n* vectors in *V* is a basis of *V*.
- d) Any set of *n* vectors in *V* that contains the zero vector can not span *V*.

e) Only if *B* is a basis, any vector *u* in *V* can be written as a linear combination of a set of vectors of *B*.

(iii) Given the matrix
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & -1 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

- a) The eigenvalues of A are 1, -1, 2.
- b) A is diagonalizable.
- c) det(A) = -2.
- d) rank (*A*) < 3.
- e) The sum of dimensions of all eigenspaces of A is 3.

- (vi) If A is 4×5 matrix, and rank(A) = 4, then
 - a) Row-vectors of *A* are linearly independent.
 - b) Column-vectors of *A* are linearly independent.
 - c) AX = O has infinite solutions.
 - d) Nullity(A) = 1.
 - e) Nullity $(A^T) = 0$.