University of Bahrain
 College of Science
 Mathematics department

 Summer Semester 2004

 Summer Semester 2004}

Final Examination
Max. Mark: 50
Date: 28 / 08 / 2004
Time: $\mathbf{2}$ hours

Question 1: $\quad[4+4+(3 \times 3)$ marks]
a) Let t be a real number. Discuss the rank and the nullity of the following matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & t & 2 \\
t & 1 & 1
\end{array}\right]
$$

b) For what value of a are the polynomials

$$
p_{1}=1+2 x+x^{2} \quad, \quad p_{2}=1+x^{2} \quad, \quad p_{3}=1+x+a x^{2}
$$

linearly independent in P_{2}.
c) Let $V=\operatorname{Span}\left\{u_{1}, u_{2}, u_{3}\right\}$, where

$$
u_{1}=(1,0,1,0) \quad, \quad u_{2}=(1,1,0,0) \quad, \quad u_{3}=(0,1,1,0)
$$

(i) Show that $S=\left\{u_{1}, u_{2}, u_{3}\right\}$ is a basis of V.
(ii) Find the coordinates of $v=(1,2,1,0)$ relative to S.
(iii) Is the set $\left\{v, 3 u_{1}, 2 u_{2}, u_{2}+u_{3}\right\}$ linearly independent?

Question 2: $[(3 \times 3)+(3 \times 3)$ marks]

a) Consider the bases $B=\left\{u_{1}, u_{2}\right\}$ and $B^{\prime}=\left\{v_{1}, v_{2}\right\}$ of the real vector space IR^{2}, where

$$
u_{1}=(1,1) \quad, \quad u_{2}=(1,0) \quad, \quad v_{1}=(0,1) \quad, \quad v_{2}=(-1,2)
$$

(i) Find the transition matrix from B^{\prime} to B.
(ii) Find the transition matrix from B to B^{\prime}.
(iii) Find the coordinates of $w=(3,4)$ relative to the basis B^{\prime}.
b) Let V be an inner product space and u, v are two nonzero vectors of V such that $\|u\|=\|v\|=h$. Let θ be the angle between u and v, and $w=\frac{1}{2}(u+v)$. Then
(i) Find $\langle u, \mathrm{w}\rangle$ as a function of h and θ.
(ii) Find $\|w\|$ as a function of h and θ.
(iii) Find the angle θ^{\prime} between u and w as a function of θ.

Question 3: [3×5 marks]

Consider the following matrix

$$
A=\left[\begin{array}{lll}
3 & 0 & 0 \\
4 & 1 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

a) Find the eigenvalues of A.
b) Find a basis for each eigenspace of A.
c) Is there an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix? Explain.
d) Find P^{-1}.
e) Find A^{n} for every positive integer n.

