University of Bahrain College of Science Mathematics department Second Semester 2001-2002

Final Examination

Math 253 Duration: 2 hours Max. Mark: 50 Date: 12th Jun, 2002

<u>Question 1:</u> [8 marks]

- a) Find a counterexample to show that the following statement is not a tautology $p \land q \land r \Rightarrow \neg[(p \Rightarrow q) \Rightarrow r]$
- **b)** Premises: $S \lor P$, $E \Rightarrow \neg P$, $S \lor P \Rightarrow (\neg P \Rightarrow S)$ Prove: $E \Rightarrow S$

<u>Question 2:</u> [10 marks]

- a) Let *n* be a positive integer. Prove that n is even if and only if 4 divides n^2 .
- **b**) Let $a \ge 2$ be a real number. Use mathematical induction to show that $a^{n-1} \le a^n 1$ for n = 1, 2, ...
- c) Let *a* be a positive real number. Prove by contradiction, that if a > 1, then $a > \sqrt{a}$.

Question 3: [8 marks]

a) Prove that if $C \neq \emptyset$, then $A \cap B = \emptyset$ if and only if $(A \times C) \cap (B \times C) = \emptyset$

b) $(A' \cup B') \cap (A \cup B) = \emptyset$.

Use a Venn diagram to determine whether this conjecture is true or false. In case it is true, prove it. In case it is false, give a counterexample.

Question 4: [12 marks]

a) Let $f: \mathbb{IR} \to \mathbb{IR}$ be a function defined as $f(x) = 2x^2 + 1$. Find f[A], $f^{-1}[B]$, where A = [1, 2] and B = (-1, 1].

b) Let $f: IN \to IR$ be the function defined as f(x) = 1 + x, and $g: [1, \infty) \to IR$ be the function defined as $g(x) = \sqrt{x}$. Show that $g \circ f$ is well defined and find it explicitly.

c) Let $f: D \to C$ be a function and A a subset of D. Prove that if f is one-to-one, then $f[D-A] \subseteq C - f[A]$

<u>Question 5:</u> [12 marks]

a) Let *S* be a relation on IR, defined as $S = \{ (x, y) : |x| + |y| \le 1 \}$. Determine whether *S* is reflexive, symmetric, anti-symmetric and transitive. Is *S* an equivalence relation.

b) Let A = { a, b, c, d, e, f } and let the partial order \leq be defined by the Hasse diagram :

- (i) Find any maximal or minimal elements of *A*.
- (ii) Find any greatest or least element of *A*.
- (iii) Find lower bounds and upper bounds of $\{c, d, e, f\}$