University of Bahrain

 College of ScienceMathematics department
Second Semester 2001-2002
Final Examination
Math 253
Max. Mark: 50
Duration: 2 hours

Question 1: [8 marks]

a) Find a counterexample to show that the following statement is not a tautology

$$
p \wedge q \wedge r \Rightarrow \neg[(p \Rightarrow q) \Rightarrow r]
$$

b) Premises: $S \vee P \quad, \quad E \Rightarrow \neg P \quad, \quad S \vee P \Rightarrow(\neg P \Rightarrow S)$

Prove: $\quad E \Rightarrow S$

Question 2: [10 marks]

a) Let n be a positive integer. Prove that n is even if and only if 4 divides n^{2}.
b) Let $a \geq 2$ be a real number. Use mathematical induction to show that $a^{n-1} \leq a^{n}-1$ for $n=1,2, \ldots$
c) Let a be a positive real number. Prove by contradiction, that if $a>1$, then $a>\sqrt{a}$.

Question 3: [8 marks]

a) Prove that if $C \neq \varnothing$, then

$$
A \cap B=\varnothing \text { if and only if }(A \times C) \cap(B \times C)=\varnothing
$$

b) $\left(A^{\prime} \cup B^{\prime}\right) \cap(A \cup B)=\varnothing$.

Use a Venn diagram to determine whether this conjecture is true or false. In case it is true, prove it. In case it is false, give a counterexample.

Question 4: [12 marks]

a) Let $f: \mathrm{IR} \rightarrow \mathrm{IR}$ be a function defined as $f(x)=2 x^{2}+1$. Find $f[A], f^{-1}[B]$, where $A=[1,2]$ and $B=(-1,1]$.
b) Let $f: \mathrm{IN} \rightarrow \mathrm{IR}$ be the function defined as $f(x)=1+x$, and $g:[1, \infty) \rightarrow \mathrm{IR}$ be the function defined as $g(x)=\sqrt{x}$. Show that g o f is well defined and find it explicitly.
c) Let $f: D \rightarrow C$ be a function and A a subset of D. Prove that if f is one-to-one, then $f[D-A] \subseteq C-f[A]$

Question 5: [12 marks]

a) Let S be a relation on IR, defined as $S=\{(x, y):|x|+|y| \leq 1\}$. Determine whether S is reflexive, symmetric, anti-symmetric and transitive. Is S an equivalence relation.
b) Let $\mathrm{A}=\{a, b, c, d, e, f\}$ and let the partial order \leq be defined by the Hasse diagram :

(i) Find any maximal or minimal elements of A.
(ii) Find any greatest or least element of A.
(iii) Find lower bounds and upper bounds of $\{c, d, e, f\}$

