University of Bahrain
 College of Science
 Mathematics department
 Second Semester 2002-2003

Final Examination
Max. Mark: 50
Duration: 2 hours
Date: ${ }^{\text {th }}$ Jun, 2002

Question 1: [8 marks]

a) Determine whether the following is a tautology

$$
[r \Rightarrow(\neg p \Rightarrow q)] \Leftrightarrow[(r \wedge \neg p) \Rightarrow q]
$$

b) Premises:

Prove:

Question 2: [10 marks]

a) Use mathematical induction to show that

$$
11!+22!+\ldots+n n!=(n+1)!-1 \text { for } n=1,2, \ldots
$$

b) Prove or disprove: If x is real number, then $\sqrt{x^{2}+1} \geq \frac{|x|+1}{\sqrt{2}}$
c) Prove that there is a real number $\delta>0$ such that for any $a>0$, we have $a<\sqrt{x}<a+\frac{1}{a}$ whenever $\mathrm{a}^{2}<x<\mathrm{a}^{2}+\delta$.

Question 3: $[4+4+4$ marks]

a) Prove that $(A-B) \cup(B-A)=(A \cup B)-(A \cap B)$
b) $A \cap B \subseteq\left(\mathrm{~A} \cap C^{\prime}\right) \cup(B \cap C)$

Use a Venn diagram to determine whether this conjecture is true or false. In case it is true, prove it. In case it is false, give a counterexample.
c) Write X in terms of A, B, and C, and the operations \cap, \cup, and ', where

$$
X=\{x: x \notin A \Rightarrow(x \in B \Rightarrow x \in C)\}
$$

Question 4: [(4 + 2) + 6 marks]

a) Let $f: \operatorname{IR}-\{0\} \rightarrow$ IR be a function defined as $f(x)=1+\frac{a}{x}$, where $\mathrm{a}>0$.
(i) Find $f[A], f^{-1}[B]$, where $A=(0,1]$ and $B=\{-1,2\}$.
(ii) Is f o f well defined ?
c) Let $f: D \rightarrow C$ be a function and A, B be two subset of D. Prove that if f is one-toone, then: $A \cap B=\varnothing$ if and only if $f[A] \cap f[B]=\varnothing$.

Question 5: [12 marks]

Let R be a relation on IR , defined as $x S y \Leftrightarrow x+y$ is even.
a) Prove that R is an equivalence relation.
b) Find its equivalence classes.

