University of Bahrain College of Science Mathematics department Second Semester 2002-2003

Final Examination

Math 253 Duration: 2 hours Max. Mark: 50 Date: th Jun, 2002

Question 1: [8 marks]

- a) Determine whether the following is a tautology $[r \Rightarrow (\neg p \Rightarrow q)] \Leftrightarrow [(r \land \neg p) \Rightarrow q]$
- **b**) Premises: Prove :

Question 2: [10 marks]

a) Use mathematical induction to show that $1 \ 1! + 2 \ 2! + ... + n \ n! = (n+1)! - 1$ for n = 1, 2, ...

b) Prove or disprove: If x is real number, then $\sqrt{x^2 + 1} \ge \frac{|x| + 1}{\sqrt{2}}$

c) Prove that there is a real number $\delta > 0$ such that for any a > 0, we have $a < \sqrt{x} < a + \frac{1}{a}$ whenever $a^2 < x < a^2 + \delta$.

<u>Question 3:</u> [4+4+4 marks]

- **a**) Prove that $(A B) \cup (B A) = (A \cup B) (A \cap B)$
- b) $A \cap B \subseteq (A \cap C') \cup (B \cap C)$ Use a Venn diagram to determine whether this conjecture is true or false. In case it is true, prove it. In case it is false, give a counterexample.
- c) Write X in terms of A, B, and C, and the operations \cap, \cup , and ', where $X = \{ x : x \notin A \implies (x \in B \implies x \in C) \}$

Question 4: [(4 + 2) + 6 marks]

a) Let $f: \operatorname{IR}\{0\} \to \operatorname{IR}$ be a function defined as $f(x) = 1 + \frac{a}{x}$, where a > 0. (i) Find f[A], $f^{-1}[B]$, where $A = \{0, 1\}$ and $B = \{-1, 2\}$. (ii) Is $f \circ f$ well defined ?

c) Let $f: D \to C$ be a function and A, B be two subset of D. Prove that if f is one-toone, then: $A \cap B = \emptyset$ if and only if $f[A] \cap f[B] = \emptyset$.

Question 5: [12 marks]

Let *R* be a relation on IR, defined as $x S y \Leftrightarrow x + y$ is even.

- **a**) Prove that *R* is an equivalence relation.
- **b**) Find its equivalence classes.