University of Bahrain College of Science Mathematics department Second Semester 2004-2005

Final Examination

Math 253 Duration: 2 hours Date: 15th June, 2005 Max. Mark: 50

Name:	<u>I.D.No:</u>	Section:

Marking Scheme

Max. Mark	Mark. Obtained
10	
8	
8	
10	
6	
8	
50	
	10 8 8 10 10 6 8

Question 1: [10 marks]

1) Let *p* , *q* and *n* be positive integers. Consider the statement:

$$p + q = n \implies \forall \epsilon \in (0, 1), (p \ge \epsilon n \lor q \ge (1 - \epsilon)n)$$
 (*)

- **a**) Write the negation of (*).
- **b**) Write the contrapositive of (*)
- **c**) Prove (*)

2) Prove that $(p \land q) \Leftrightarrow r \equiv [(p \land q \land r) \lor (\neg p \land \neg r)] \lor (\neg q \land \neg r).$

<u>Question 2:</u> [8 marks]

1) Prove or disprove in **Z**: $\exists x, y, z, (x, y, z \text{ are odd } \land x + y + z = 100).$

2) Prove that 3 divides $n^3 - n$, for every n = 0, 1, 2, ...

Question 3: [8 marks]

1) Prove that if $A \cap B = \emptyset$, then $P(A) \cap P(B) = \{\emptyset\}$.

2) Let *A* a non-empty set. Prove that if $(A - B) \times A = \emptyset$, then $A \subseteq B$.

Question 4: [10 marks]

- 1) Let $f: (0, \infty) \rightarrow \mathbf{R}$ be the function defined by $f(x) = 1 + \frac{1}{x}$.
 - **a**) Find f[A], where A = [1, 2].
 - **b**) Find $f^{-1}[B]$, where B = (2, 5).
 - c) Let $g: \mathbf{N} \to \mathbf{Z}$ be the function defined by g(x) = 2x 1. Is fog well defined?

2) Let $f: D \to D$ be a function such that $f \circ f = 1_D$. Prove that f is bijective.

Question 5: [6 marks]

Let $f: D \to C$ be a function and A, B be two subsets of D.

1) Prove that $f[A] - f[B] \subseteq f[A - B]$.

2) Prove that if f is one-to-one, then $f[A-B] \subseteq f[A] - f[B]$.

<u>Question 6:</u> [8 marks]

- Let *R* be a relation on a subset *A* of $(0, \infty)$, defined by: $x R y \iff x \operatorname{Ln}(y) = y \operatorname{Ln}(x)$.
 - **a**) Prove that *R* is an equivalence relation.
 - **b**) Suppose that $A = \{1, 2, 4, 8, 16\}$. Find the equivalence classes of *R*.