University of Bahrain
College of Science
Mathematics department
Second Semester 2004-2005

Final Examination

Math 253
Duration: 2 hours
Date: $15^{\text {th }}$ June, 2005
Max. Mark: 50

Name:	I.D.No:	Section:

Marking Scheme

Questions	Max. Mark	Mark. Obtained
1	10	
2	8	
3	8	
4	10	
5	$\mathbf{6}$	
6	50	
Total		

Question 1: [10 marks]

1) Let p, q and n be positive integers. Consider the statement:

$$
\begin{equation*}
p+q=n \Rightarrow \forall \varepsilon \in(0,1),(p \geq \varepsilon n \quad \vee \quad q \geq(1-\varepsilon) n) \tag{*}
\end{equation*}
$$

a) Write the negation of (*).
b) Write the contrapositive of (*)
c) Prove (*)
2) Prove that $(p \wedge q) \Leftrightarrow r \equiv[(p \wedge q \wedge r) \vee(\neg p \wedge \neg r)] \vee(\neg q \wedge \neg r)$.

Question 2: [8 marks]

1) Prove or disprove in Z: $\exists x, y, z,(x, y, z$ are odd $\wedge x+y+z=100)$.
2) Prove that 3 divides $n^{3}-n$, for every $n=0,1,2, \ldots$

Question 3: [8 marks]

1) Prove that if $A \cap B=\varnothing$, then $P(A) \cap P(B)=\{\varnothing\}$.
2) Let A a non-empty set. Prove that if $(A-B) \times A=\varnothing$, then $A \subseteq B$.

Question 4: [10 marks]

1) Let $f:(0, \infty) \rightarrow \mathbf{R}$ be the function defined by $f(x)=1+\frac{1}{x}$.
a) Find $f[A]$, where $A=[1,2]$.
b) Find $f^{-1}[B]$, where $B=(2,5)$.
c) Let $g: \mathbf{N} \rightarrow \mathbf{Z}$ be the function defined by $g(x)=2 x-1$. Is f o g well defined?
2) Let $f: D \rightarrow D$ be a function such that f o $f=1_{D}$. Prove that f is bijective.

Question 5: [6 marks]

Let $f: D \rightarrow C$ be a function and A, B be two subsets of D.

1) Prove that $f[A]-f[B] \subseteq f[A-B]$.
2) Prove that if f is one-to-one, then $f[A-B] \subseteq f[A]-f[B]$.

Question 6: [8 marks]

Let R be a relation on a subset A of $(0, \infty)$, defined by: $x R y \Leftrightarrow x \operatorname{Ln}(y)=y \operatorname{Ln}(x)$.
a) Prove that R is an equivalence relation.
b) Suppose that $A=\{1,2,4,8,16\}$. Find the equivalence classes of R.

