University of Bahrain College of Science Mathematics department First Semester 2007-2008

Final Examination

Math 253 Duration: 2 hours Date: 26th January, 2008 Max. Mark: 50

<u>Name:</u>	I.D.No:	Section:

Marking Scheme

Questions	Max. Mark	Mark. Obtained
1	8	
2	12	
3	11	
4	12	
5	7	
Total	50	

Question 1: [(2+3)+ 3 marks]

1) Consider the statement: $\exists \delta > 0 \ (\frac{1}{4} < x < 1 + \delta) \Rightarrow (\frac{1}{2} < \sqrt{x} < \frac{3}{2}).$ (*) a) Write the negation of (*). b) Prove (*). 2) Premises: $p \lor q$, $q \Rightarrow \neg (r \land s)$, $p \lor q \Rightarrow (\neg q \Rightarrow p)$ Prove : $(r \land s) \Rightarrow p$

Question 2: [4+4+4 marks]

- **a)** Prove or disprove: If *a* is real number, then $\sqrt{4a^2 + 1} \ge \frac{2|a|+1}{\sqrt{2}}$.
- **b**) Use a mathematical induction to show that:

 2^{n} divides (n+1)(n+2)...(2n-1)(2n), for n=0, 1, 2, ...

c) Prove by contradiction: If $|x| < \varepsilon$ for all $\varepsilon > 0$, then x = 0.

Question 3: [2 + 3 + 3 + 3 marks]

Define $A + B = (A - B) \cup (B - A)$

- **a**) Draw Venn diagram for (A + B) C.
- **b)** Prove that $A + B = (A \cup B) (A \cap B)$.
- c) Prove that $A + (A \cap B) = A B$.
- **d**) Use a pick-a-point to show that if $A + B \subseteq C$, then $A \cup C \subseteq B \cup C$.

Question 4: [(3+3+3)+3 marks]

1) Let $f: (0, \infty) \to \mathbf{IR}$ be a function defined as $f(x) = x^2 + 2x$.

a) Find f[A], $f^{-1}[B]$, where A = [1, 2] and $B = \{1, -1\}$.

b) Is *f* onto? Is *f* one-to-one?

c) Show that $f \circ f$ is well defined and find it explicitly.

2) Let $f: D \to C$ be a function and A, B be two subset of D. Prove that if f is one-toone, then: $A \cap B = \emptyset$ if and only if $f[A] \cap f[B] = \emptyset$.

Question 5: [7 marks]

Let *R* be a relation on **Z**, defined as $x R y \Leftrightarrow x + y$ is even.

- **a**) Prove that R is an equivalence relation.
- **b**) Find its equivalence classes.