University of Bahrain College of Science Mathematics department Second Semester 2008-2009

Final Examination

Math 253 Date: 16 / 06 / 2009 Max. Marks: 50 Duration: 2 hours

Name: ID Number:

Instructions:

- 1) Please check that this test has 6 questions and 8 pages.
- 2) Write your name, student number, and section in the above box.

Question	Max. Marks	Marks obtained
1	8	
1	0	
2	8	
3	8	
4	8	
5	10	
6	8	
Total	50	

Good Luck

Question 1: [4 + 4 marks]

a) Prove that the following statement is a tautology

$$(p \Leftrightarrow q) \Rightarrow [(p \land r) \Leftrightarrow (q \land r)]$$

and, give a counter-example to show that the converse is false.

b) Let (a_n) be a sequence such that $a_1 = 1$, and $a_n = 3a_{n-1} - 1$ for n > 1. Prove that $a_n = \frac{3^{n-1} + 1}{2}$ for n = 1, 2, 3, ...

Question 2 [8 marks]

Let $U = \{2, 3, ...\}$. Consider the predicate:

$$\exists m \in U, \ \exists n \in U, \ (\frac{1}{m} + \frac{1}{n} = \frac{7}{17})$$
 (*)

- **a**) Show that $m \neq 2$ and $n \neq 2$.
- **b**) Show that m < 5 or n < 5.
- c) Deduce that *m* or *n* must be 3 or 4.
- **d**) Derive the solution set of the predicate (*).

Question 3: [4 + 4 marks]

a) Simplify $[(A - B)' - (B - A)'] \cup (A \cap B)$.

b) Prove that, $A - B \subseteq C$ if and only if $A - C \subseteq B$.

<u>Question 4:</u> [4+4 marks]

a) Let *A* be a subset of *X*. Prove or disprove

$$(X \times X) - (A \times A) = [(X - A) \times X] \cup [X \times (X - A)].$$

b) Let $f: D \to C$ be a function and X a subset of D. If f is bijective, show that

f[D-X] = C - f[X].

Question 5: [10 marks]

Let $f: \mathbb{R} \to (-1, 1)$ be the function defined $f(x) = \frac{x}{1 + |x|}$.

- **a**) Prove that : $a \ b > 0 \Leftrightarrow f(a) \ f(b) > 0$, for every $a, b \in \mathbb{R}$.
- **b**) Prove that f is one to one.
- c) Prove that *f* is onto. (Distinguish the cases: $y \ge 0$ and y < 0)
- **d**) Find $f^{-1}(A)$, where $A = \{\frac{1}{2}, -\frac{1}{4}\}.$
- e) Determine the inverse function of f.

Question 6: [4 + 4 marks]

a) Let f is a real valued function. Let R be a relation defined on \mathbb{R} by $x R y \iff f(x) = f(y)$. Show that R is an equivalence relation.

b) If f is defined by $f(x) = x^2 - x + c$, find the equivalence class of any element a of \mathbb{R} .

Solution: