University of Bahrain
College of Science
Mathematics department
Second Semester 2008-2009

Final Examination

Math 253
Max. Marks: 50

Duration: 2 hours

Name:
ID Number:

Instructions:

1) Please check that this test has 6 questions and 8 pages.
2) Write your name, student number, and section in the above box.

Question	Max. Marks	Marks obtained
1	8	
2	8	
3	8	
4	8	
5	10	
6	50	
Total	8	

Good Luck

Question 1: [4 + 4 marks]

a) Prove that the following statement is a tautology

$$
(p \Leftrightarrow q) \Rightarrow[(p \wedge r) \Leftrightarrow(q \wedge r)]
$$

and, give a counter-example to show that the converse is false.
b) Let $\left(a_{n}\right)$ be a sequence such that $a_{1}=1$, and $a_{n}=3 a_{n-1}-1$ for $n>1$. Prove that $a_{n}=\frac{3^{n-1}+1}{2}$ for $n=1,2,3, \ldots$

Question 2 [8 marks]

Let $U=\{2,3, \ldots\}$. Consider the predicate:

$$
\begin{equation*}
\exists m \in U, \quad \exists n \in U,\left(\frac{1}{m}+\frac{1}{n}=\frac{7}{17}\right) \tag{*}
\end{equation*}
$$

a) Show that $m \neq 2$ and $n \neq 2$.
b) Show that $m<5$ or $n<5$.
c) Deduce that m or n must be 3 or 4 .
d) Derive the solution set of the predicate $\left(^{*}\right)$.

Question 3: [4 + 4 marks]
a) Simplify $\left[(A-B)^{\prime}-(B-A)^{\prime}\right] \cup(A \cap B)$.
b) Prove that, $A-B \subseteq C$ if and only if $A-C \subseteq B$.

Question 4: [4 + 4 marks]

a) Let A be a subset of X. Prove or disprove

$$
(X \times X)-(A \times A)=[(X-A) \times X] \cup[X \times(X-A)] .
$$

b) Let $f: D \rightarrow C$ be a function and X a subset of D. If f is bijective, show that

$$
f[D-X]=C-f[X] .
$$

Question 5: [10 marks]

Let $f: \mathbb{R} \rightarrow(-1,1)$ be the function defined $f(x)=\frac{x}{1+|x|}$.
a) Prove that : $a b>0 \Leftrightarrow f(a) f(b)>0$, for every $a, b \in \mathbb{R}$.
b) Prove that f is one to one.
c) Prove that f is onto. (Distinguish the cases: $y \geq 0$ and $y<0$)
d) Find $f^{-1}(A)$, where $A=\left\{\frac{1}{2},-\frac{1}{4}\right\}$.
e) Determine the inverse function of f.

Question 6: [4 + 4 marks]
a) Let f is a real valued function. Let R be a relation defined on \mathbb{R} by

$$
x R y \Leftrightarrow f(x)=f(y) .
$$

Show that R is an equivalence relation.
b) If f is defined by $f(x)=x^{2}-x+c$, find the equivalence class of any element a of \mathbb{R}.

Solution:

