University of Bahrain College of Science Mathematics department First Semester 2009-2010

Final Examination

Math 253 Date: 14 / 01 / 2010 Max. Marks: 50 Duration: 2 hours

Name:

ID Number:

Instructions:

- 1) Please check that this test has 6 questions and 8 pages.
- 2) Write your name, student number, and section in the above box.

Question	Max. Marks	Marks obtained
1	-	
1	1	
2	8	
3	8	
4	8	
5	11	
6	8	
Total	50	

Good Luck

<u>Question 1:</u> [0.5×14 = 7 marks]

a) Answer each of the following statements by **true** or **false**

Statement	True	False
7 is odd if and only if 6 is even		
$0^2 = -1$ and $1 + 1 = 2$		
$x^2 \ge 0 \text{or} x^2 < 0$		
If $1 > 2$, then $\cos^2(1) + \sin^2(1) = 1$		
$\emptyset \in \{\{\emptyset\}\}$		
$\varnothing \subseteq \{\varnothing, \{\varnothing\}\}$		
$P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$		
$\exists x \ (x \in \{\emptyset\} \land x \subseteq \{\emptyset\})$		

b) Consider the following statement:

$$(x > 2 \land |x + y| = 2) \implies (y < 2 \lor y < -4).$$

Fill in the blanks:

converse	
negative	
contrapositive	

c) Consider the following statement: $r \Rightarrow \neg p \lor q \Leftrightarrow r \land p \Rightarrow q$

and suppose that p and q are true and r is false.

Fill in the blanks:

Put parentheses	
Main connective	
Truth value	

<u>Question 2</u> [4+4 marks]

a) Let $U = \mathbb{N}$. Consider the predicate:

$$\exists x \in U, \exists y \in U, (x^2 = 4y - 2)$$
 (*)

i) Show that *x* is even.

ii) Derive the solution set of the predicate (*).

b) Let (a_n) be a sequence such that $a_1 = 1$, and $a_n = \sqrt{(a_{n-1})^2 + \pi}$ for n > 1. Determine a_n for n = 1, 2, 3, ...

Question 3: [4 + 4 marks]

a) Use algebraic method to prove: $(A \cup B) - (A \cup C) = (B - C) - A$.

b) Let *A*, *B* and *C* be three sets such that $A \times B \subseteq A \times C$. Prove

- (i) $A \times (B C) = \emptyset$.
- (*ii*) $A = \emptyset$ or $B \subseteq C$.

<u>Question 4:</u> [4+4 marks]

a) Let $f: D \to C$ be a one-to-one function, and A, B be two subsets of D. Prove that, if $A \cap B = \emptyset$, then $f[A] \cap f[B] = \emptyset$.

b) Let $f: D \to C$ be a function and *Y* a subset of *C*. Show that $f^{-1} [C - Y] = D - f^{-1} [Y]$.

<u>Question 5:</u> [3+2+2+2+2 marks]

Let $f: \mathbb{R} \{0\} \to \mathbb{R} \{1\}$ be a function defined as $f(x) = 1 + \frac{a}{x}$, where a > 0.

- **a**) Prove that *f* is bijective.
- **b**) Find the inverse function of *f*.
- c) Find f[A], where A = (0, 1].
- **d**) Find $f^{-1}[B]$, where $B = \{-1, 2\}$.
- e) Is fof well defined ?

<u>Question 6:</u> [4 + 4 marks]

Let *R* be a relation on \mathbb{Z} , defined as $x R y \Leftrightarrow x + y$ is even.

- **a**) Prove that *R* is an equivalence relation.
- **b**) Find its equivalence classes.