University of Bahrain College of Science Mathematics department Second Semester 2006-2007

Final Examination

Math 311 Duration: 2 hours Date: 23 / 06 / 2007 Max. Mark: 50

Name:

ID Number:

Section:

Instructions:

- 1) Please check that this test has 5 questions and 7 pages.
- 2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
1	10	
2	10	
3	10	
4	6	
5	14	
Total	50	

Good Luck

Question 1: $[2.5 \times 4 \text{ marks}]$

Find the answers to the following questions:

a) Let *a* be an element of a group *G* such that o(a) = n. If n = km, determine $o(a^k)$.

b) In a group G, if x a = b, $c = x a x^{-1}$ and $d = x b x^{-1}$, then determine $c d^{-1}$.

c) Find the order of $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

d) Let *H* and *K* be two cyclic groups such that o(H) = 3 and o(K) = 5. Find a group isomorphic to $H \oplus K$.

Question 2: [2.5 × 4 marks]

Find the answers to the following questions:

a) Let $a = (12, 10, 18) \in \mathbb{Z}_{18} \oplus \mathbb{Z}_{15} \oplus \mathbb{Z}_{24}$. Find the order of *a*.

b) Let $\sigma, \rho \in S_n$. Prove that $\sigma^{-1}\rho^{-1}\sigma\rho \in A_n$.

c) Let *H* be a normal subgroup of *G* and *a*, *b* are two elements of *G*. Prove that, if $a b \in H$, then $b a \in H$.

d) Let *H* be a subgroup of *G* such that (G : H) = 2. Prove that $a^2 \in H$ for all $a \in G$.

<u>Question 3:</u> [6+4 marks]

- Let (G, .) be a group and H be a subgroup of (G, .).
- **a**) Show that (*G*, *) is a group for the following binary operation: $x * y = x a^{-1} y$.
- **b**) Prove that $F = \{x \ a : x \in H\}$ is a subgroup of (G, *).

<u>Question 4</u>: [4 + 4 marks]

In a group G, let a and b be two elements such that a b = b a, o(a) = 4 and o(b) = 5. Prove the following:

a) < $a > \cap < b > = \{e\}.$

b) o(a b) = 20.

<u>Question 5</u>: [3 + 2 + 3 + 3 + 3 marks]

Let G be an abelian group, and H and K be two subgroups of G. Define a function

- $\psi: H \oplus K \to HK$ by $\varphi((x, y)) = x y^{-1}$
- **a**) Prove that ψ is a homomorphism.
- **b**) Show that ψ is onto.
- c) Prove that $\operatorname{Ker}(\psi) = \{(x, x) : x \in H \cap K\}.$
- **d**) Prove that $\operatorname{Ker}(\psi) \cong H \cap K$.
- e) Deduce that if *H* and *K* are finite, then $|HK| = \frac{|H \oplus K|}{|H \cap K|}$.