University of Bahrain
College of Science
Mathematics department
Second Semester 2006-2007

Final Examination

Math 311
Duration: 2 hours
Date: 23 / 06 / 2007
Max. Mark: 50
Name:
ID Number:
Section:

Instructions:

1) Please check that this test has 5 questions and 7 pages.
2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
$\mathbf{1}$	10	
2	10	
3	10	
4	$\mathbf{6}$	
5	14	
Total	50	

Good Luck

Question 1: [2.5 $\times 4$ marks]

Find the answers to the following questions:
a) Let a be an element of a group G such that $\mathrm{o}(a)=n$. If $n=k m$, determine $\mathrm{o}\left(a^{k}\right)$.
b) In a group G, if $x a=b, c=x a x^{-1}$ and $d=x b x^{-1}$, then determine $c d^{-1}$.
c) Find the order of $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
d) Let H and K be two cyclic groups such that $\mathrm{o}(H)=3$ and $\mathrm{o}(K)=5$. Find a group isomorphic to $H \oplus K$.

Question 2: [2.5 $\times 4$ marks]

Find the answers to the following questions:
a) Let $a=(12,10,18) \in \mathrm{Z}_{18} \oplus \mathrm{Z}_{15} \oplus \mathrm{Z}_{24}$. Find the order of a.
b) Let $\sigma, \rho \in S_{n}$. Prove that $\sigma^{-1} \rho^{-1} \sigma \rho \in A_{n}$.
c) Let H be a normal subgroup of G and a, b are two elements of G. Prove that, if $a b \in H$, then $b a \in H$.
d) Let H be a subgroup of G such that $(G: H)=2$. Prove that $a^{2} \in H$ for all $a \in G$.

Question 3: [6 + 4 marks]

Let $(G,$.$) be a group and H$ be a subgroup of $(G,$.$) .$
a) Show that $(G, *)$ is a group for the following binary operation: $x * y=x a^{-1} y$.
b) Prove that $F=\{x a: x \in H\}$ is a subgroup of $(G, *)$.

Question 4: [4 + 4 marks]

In a group G, let a and b be two elements such that $a b=b a, \mathrm{o}(a)=4$ and $\mathrm{o}(b)=5$.
Prove the following:
a) $\langle a\rangle \cap\langle b\rangle=\{e\}$.
b) $\mathrm{o}(a b)=20$.

Question 5: $\quad[3+2+3+3+3$ marks $]$

Let G be an abelian group, and H and K be two subgroups of G. Define a function $\psi: H \oplus K \rightarrow H K$ by $\varphi((x, y))=x y^{-1}$
a) Prove that ψ is a homomorphism.
b) Show that ψ is onto.
c) Prove that $\operatorname{Ker}(\psi)=\{(x, x): x \in H \cap K\}$.
d) Prove that $\operatorname{Ker}(\psi) \cong H \cap K$.
e) Deduce that if H and K are finite, then $|H K|=\frac{|H \oplus K|}{|H \cap K|}$.

