University of Bahrain College of Science Mathematics department Second Semester 2007-2008

Final Examination

Math 311

Duration: 2 hours Date: 16 / 06 / 2007 Max. Mark: 50

Name:	
ID Number:	Section:

Instructions:

- 1) Please check that this test has 5 questions and 7 pages.
- 2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
I	18	
II	6	
III	6	
IV	6	
V	14	
Total	50	

Good Luck

Question I: [18 marks]

a) Find the order of (3 , 10 , 5) in ${\bf Z}_6 \times {\bf Z}_{15} \times {\bf Z}_{10}$.

b) If G is a cyclic group of order 360, show that $G \cong \mathbf{Z}_8 \times \mathbf{Z}_9 \times \mathbf{Z}_5$.

c) List the elements of $\mathbf{Z}_4 \times \mathbf{Z}_3 /_{<(0,1)>}$.

d) Is the multiplicative group (\mathbf{R}^* , .) cyclic?

e) Let a be an element of a multiplicative group G. If o(a) = p is a prime number, Find the order of a^{3p+1} .

f) Prove that K is a Sylow 2-subgroup of A_4 , where

$$K = \{ \rho_0, \sigma_1 = (1\ 2)(3\ 4), \sigma_2 = (1\ 3)(2\ 4), \sigma_3 = (1\ 4)(2\ 3) \}$$

Question II: [3 + 3 marks]

Let p be a prime number and G be a finite group such that p divides o(G).

- **a)** Prove that a Sylow *p*-group *H* of *G* is normal if and only if *H* is the unique Sylow *p*-subgroup of *G*.
- **b)** Conclude that a group G of order $p^2(p-1)$ is not simple.

Question III: [3 + 3 marks]

If $f: G \to G$ ' be a homomorphism and $a \in G$.

- (1) If o(a) is finite, show that o(f(a)) divides o(a).
- (2) Conclude that, if o(a) is a prime number, then o(a) = o(f(a)) or $a \in Ker(f)$.

Question IV: [3 + 3 marks]

Let G be an Abelian group of order 2n, where n is an odd positive integer.

- a) By using Cauchy's Theorem, prove that G has an element a of order 2.
- **b)** Show that a is the unique element of G of order 2.

Question V: [14 marks]

Let (G, .) be an **Abelian** group and n a fixed positive integer.

Consider the function

$$\varphi: G \times G$$

$$\rightarrow$$
 G

$$(x,y) \rightarrow x^n y^{-1}$$

- a) Prove that φ is a homomorphism.
- Prove that φ onto. b)
- Show that $H = \{ (x, x^n) : x \in G \}$ is a normal subgroup of G. c)
- What is $G \times G /_H$? d)
- If the order of G is finite, find o(H). e)