University of Bahrain
College of Science
Mathematics department
Second Semester 2007-2008

Final Examination

Math 311
Duration: 2 hours
Date: 16 / 06 / 2007
Max. Mark: 50
Name:
ID Number:
Section:

Instructions:

1) Please check that this test has 5 questions and 7 pages.
2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
I	18	
II	6	
III	6	
IV	$\mathbf{6}$	
V	14	
Total	50	

Good Luck

Question I: [18 marks]

a) Find the order of $(3,10,5)$ in $\mathbf{Z}_{6} \times \mathbf{Z}_{15} \times \mathbf{Z}_{10}$.
b) If G is a cyclic group of order 360 , show that $G \cong \mathbf{Z}_{8} \times \mathbf{Z}_{9} \times \mathbf{Z}_{5}$.
c) List the elements of $\mathbf{Z}_{4} \times \mathbf{Z}_{3} /\langle(0,1)\rangle$.
d) Is the multiplicative group $\left(\mathbf{R}^{*},.\right)$ cyclic?
e) Let a be an element of a multiplicative group G. If $\mathrm{o}(a)=p$ is a prime number, Find the order of $a^{3 p+1}$.
f) Prove that K is a Sylow 2-subgroup of A_{4}, where

$$
K=\left\{\rho_{0}, \sigma_{1}=(12)(34), \sigma_{2}=(13)(24), \sigma_{3}=(14)(23)\right\}
$$

Question II: [3 + $\mathbf{3}$ marks]

Let p be a prime number and G be a finite group such that p divides $\mathrm{o}(G)$.
a) Prove that a Sylow p-group H of G is normal if and only if H is the unique Sylow p-subgroup of G.
b) Conclude that a group G of order $p^{2}(p-1)$ is not simple.

Question III: [3 + 3 marks]

If $f: G \rightarrow G^{\prime}$ be a homomorphism and $a \in G$.
(1) If $\mathrm{o}(a)$ is finite, show that $\mathrm{o}(f(a))$ divides $\mathrm{o}(a)$.
(2) Conclude that, if $\mathrm{o}(a)$ is a prime number, then $\mathrm{o}(a)=\mathrm{o}(f(a))$ or $a \in \operatorname{Ker}(f)$.

Question IV: [3 + $\mathbf{3}$ marks]

Let G be an Abelian group of order $2 n$, where n is an odd positive integer.
a) By using Cauchy's Theorem, prove that G has an element a of order 2 .
b) Show that a is the unique element of G of order 2 .

Question V: [14 marks]

Let ($G,$.) be an Abelian group and n a fixed positive integer.
Consider the function $\quad \varphi: G \times G \quad \rightarrow \quad G$ $(x, y) \quad \rightarrow \quad x^{n} y^{-1}$
a) Prove that φ is a homomorphism.
b) Prove that φ onto.
c) Show that $H=\left\{\left(x, x^{n}\right): x \in G\right\}$ is a normal subgroup of G.
d) What is $G \times G / H$?
e) If the order of G is finite, find $\mathrm{o}(H)$.

