University of Bahrain
College of Science
Mathematics department
Second Semester 2008-2009

Final Examination

Math 311
Date: 20/06/2009

Max. Marks: 50
Duration: 2 hours

Name:
ID Number:

Instructions:

1) Please check that this test has 6 questions and 7 pages.
2) Write your name, student number, and section in the above box.

Question	Max. Marks	Marks obtained
1	9	
2	9	
3	9	
4	9	
5	7	
6	7	
Total	50	

Good Luck

Question 1: [9 marks]

a) Determine the order of the element $(5,6,3)$ in the group $\mathbb{Z}_{15} \times \mathbb{Z}_{30} \times \mathbb{Z}_{12}$.

Solution:

In $\mathbb{Z}_{15}, o(5)=\frac{15}{\operatorname{gcd}(5,15)}=3$. In $\mathbb{Z}_{60}, o(6)=\frac{30}{\operatorname{gcd}(6,30)}=5$. In $\mathbb{Z}_{12}, o(3)=\frac{12}{\operatorname{gcd}(3,12)}=4$

Thus, in $\mathbb{Z}_{15} \times \mathbb{Z}_{60} \times \mathbb{Z}_{12}$, we have $\mathrm{o}(5,6,3)=\operatorname{lcm}(3,5,4)=60$.
b) Let G be a group of order 17 . Show that $G \cong \mathbb{Z} / 17 \mathbb{Z}$.

Solution:

As $|G|=17$ is a prime number, then G is cyclic. If a is a generator of G, then the function $f: \mathrm{Z} \rightarrow G$ defined by $f(n)=a^{n}$ is an epimomorphism. Moreover, we have $\operatorname{Ker}(f)=\{n \in \mathbb{Z}: f(n)=e\}=\left\{n \in \mathbb{Z}: a^{n}=e\right\}=\{n \in \mathbb{Z}: \mathrm{o}(a)=17 / n\}=17 \mathbb{Z}$. By the first isomorphic theorem, we get $\mathbb{Z} / \operatorname{Ker}(f) \cong G$, that is $\mathbb{Z} / 17 \mathbb{Z} \cong G$.
c) Let $f: G \rightarrow G^{\prime}$ be homomorphism of groups. If $|G|=7$ and $\left|G^{\prime}\right|=11$, prove that f is the trivial homomorphism defined by $f(x)=e^{\prime}$ for every $x \in G$.

Solution:

As $|G|=7$ is a prime number, then G is cyclic. If a is a generator of G, then
$G=\langle a\rangle$ with $\mathrm{o}(a)=7$. Let $x \in G$.

- If $x=e$, then $f(e)=e^{\prime}$.
- If $x \neq e$, then $o(f(x)) /\left|G^{\prime}\right|=11$. Also we know that $o(f(x)) / o(x)=7$, so $o(f(x))$
divides $\operatorname{gcd}(7,11)=1$. Thus $o(f(x))=1$, that is $f(x)=e^{\prime}$.
Hence $f(x)=e^{\prime}$ for every $x \in G$.

Question 2 [9 marks]

d) Let G be a finite group and H a subgroup of G such that $3<(G: H)<9$. If $|H|=5$, find the possible values of $|G|$.

Solution:

By Lagrange's theorem, we have $|G|=(G: H)|H|=5(G: H)$, As $3<(G: H)<9$, then $15<|G|<25$. Therefore, the possible values of $|G|$ is 20 or 25 or 30 or 35 or 40.
e) Let H and K be two subgroups of G such that $|H|$ is a prime number. Prove that $H \cap K=\{e\}$ or $H \subseteq K$.

Solution:

$H \cap K$ is a subgroup of H. By Lagrange's theorem, we have $|H \cap K|$ divides $|H|$. Since $|H|$ is a prime number, then $|H \cap K|=1$ or $|H \cap K|=|H|$.

- If $|H \cap K|=1$, then $H \cap K=\{e\}$.
- If $|H \cap K|=|H|$, then $H \cap K=H$, so $H \subseteq K$.
f) $H=\{a+b \sqrt{3}: a, b \in \mathbb{Z}\}$ is a subgroup of $(\mathbb{R},+)$. Is it cyclic?

Solution:

Suppose, by way of contradiction, that H is cyclic generated by an element $\delta=u+v \sqrt{3}$, where $a, b \in \mathbb{Z}$. As $1=1+0 \sqrt{3} \in H$, then $1=r \delta=r(u+v \sqrt{3})$ for a positive integer r. By comparison, we get $u=\frac{1}{r}$ and $v=0$, so $\delta=\frac{1}{r}$ Also $\sqrt{3} \in H$, then $\sqrt{3}=0+1 \sqrt{3} \in$ H, then $\sqrt{3}=s \delta=\frac{s}{r} \in \mathbb{Q}$, a contradiction.

Question 3: [9 marks]

Let $G=\left\{\left[\begin{array}{cc}1-r & -r \\ r & 1+r\end{array}\right]: r \in \mathbb{Z}\right\}$
a) Prove that G is a subgroup of the Linear group GL(2).
b) Show that $f: G \rightarrow \mathbb{Z}$ defined by $f\left(\left[\begin{array}{cc}1-r & -r \\ r & 1+r\end{array}\right]\right)=r$ is an isomorphism.
c) Deduce that G is cyclic and find its generators.

Solution: Set $M(r)=\left[\begin{array}{cc}1-r & -r \\ r & 1+r\end{array}\right]$.
a) It is clear that G is a subset of GL(2) since every element of G is invertible (indeed, $\operatorname{det}(M(r))=1)$ and that G is non-empty since $I=M(0) \in G$. To show that $G \leq \mathrm{GL}(2)$, it suffices to verify the following easy operations:

$$
\forall \mathrm{r}, \mathrm{~s} \in \mathbb{Z}_{,} \quad M(r) . M(s)=M(r+s) \quad \text { and } M(r)^{-1}=M(-r) .
$$

b)
f is a homomorphism: Let $M(r), M(s) \in G$, we have

$$
f(M(r) \cdot M(s))=f(M(r+s)=r+s=f(M(r)) f(M(s)) .
$$

f is onto: For every $r \in \mathbb{Z}$, we have $r=f(M(r))$, where $M(r) \in G$.
f is one-to-one:

$$
\begin{aligned}
\operatorname{Ker}(f) & =\{M(r) \in G: f(M(r))=0\} \\
& =\{M(r) \in G: r=0\} \\
& =\{M(0)\}=\{I\}
\end{aligned}
$$

c) We have $G \cong \mathbb{Z}$. As \mathbb{Z} is cyclic and has two generators 1 and -1 , then G is cyclic and has two generators : $M(1)=\left[\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right]$ and $M(-1)=\left[\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right]$

Question 4: [9 marks]

Let f be the homomorphism $f: \mathbb{Z} \rightarrow S_{4}$ of groups such that $f(1)=\left(\begin{array}{ll}1 & 3\end{array}\right)(34)$.
a) Give the definition of f.
b) Find $K=\operatorname{Ker}(f)$ and \mathbb{Z} / K.
c) Find $\operatorname{Im}(f)$ and the bijective correspondence between \mathbb{Z} / K and $\operatorname{Im}(f)$.

Solution:

a) Let $\sigma=\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array}\right)$. For $n \in \mathbb{Z}$, we have $f(n)=[f(1)]^{n}=\sigma^{n}$.
b) First note that $\mathrm{o}(\sigma)=3$. Then

$$
\begin{array}{rll}
K=\operatorname{Ker}(f) & = & \{n \in \mathbb{Z}: f(n)=e\} \\
& = & \left\{n \in \mathbb{Z}: \sigma^{n}=e\right\} \\
& = & \{n \in \mathbb{Z}: \circ(\sigma) / n\} \\
& = & \{n \in \mathbb{Z}: 3 / n\}
\end{array}
$$

Thus $K=n \mathbb{Z}$ and $\mathbb{Z} / K=\mathbb{Z} / n \mathbb{Z}$.
c) We have $f(0)=e, f(1)=\sigma=(13)(34)$ and $f(2)=\sigma^{2}=\left(\begin{array}{lll}1 & 4 & 3\end{array}\right)$. Then

$$
\begin{aligned}
\operatorname{Im}(f) & =\{f(0), f(1), f(2)\} \\
& =\left\{\mathrm{e}, \sigma=(134), \sigma^{2}=(143)\right\}
\end{aligned}
$$

d) The function $\bar{f}: \mathbb{Z} / n \mathbb{Z}: \rightarrow \operatorname{Im}(f)$ defined by

$$
\bar{f}(\overline{0})=e, \bar{f}(\overline{1})=(134) \text { and } \bar{f}(\overline{2})=(143) .
$$

is the bijective correspondence between \mathbb{Z} / K and $\operatorname{Im}(f)$.

Question 5: $[3+2+2$ marks]

Let G be an Abelian group and $H=\{a \in G: \mathrm{o}(a)$ is finite $\}$.
a) Prove that H is a normal subgroup of G.
b) Prove that if $a \in H$, then $\mathrm{o}(a H)$ divides $\mathrm{o}(a)$.
c) Deduce $\mathrm{o}(a H)$ is finite if and only if $a \in H$.

Solution:

a) Since G is an Abelian group, it suffices to show that H is a subgroup of G. It is clear that $\mathrm{o}(e)=1$, so $e \in H$ and H is non-empty.

Let $x, y \in H$. Then $\mathrm{o}(x)=r<\infty$ and $\mathrm{o}(y)=s<\infty$. We have
(i) $(x y)^{r s}=\left[(x)^{r}\right]^{s}\left[(y)^{s}\right]^{r}=(e)^{s}(e)^{r}=e$, so $\mathrm{o}(x y) / r s$. Thus $\mathrm{o}(x y)<\infty$, and $x y \in H$.
(ii) $\left(x^{-1}\right)^{r}=\left[(x)^{r}\right]^{-1}=\left(e^{-1}\right)^{r}=e$, so $\mathrm{o}\left(x^{-1}\right) / r$. Thus $\mathrm{o}\left(x^{-1}\right)<\infty$, and $x^{-1} \in H$.
b) Let $\mathrm{o}(a)=r$. We have $(a H)^{r}=a^{r} H=e H=H$, so $\mathrm{o}(a H)$ divides $\mathrm{o}(a)$.
c) In light of the point (b), we can say that, if $\mathrm{o}(a)$ is finite, then $\mathrm{o}(a H)$ is finite. Conversely, suppose that $\mathrm{o}(a H)=s$ is finite. Then $(a H)^{s}=a^{s} H=H$, so $a^{s} \in H$. It follows, by definition of elements H, that $\mathrm{o}\left(a^{s}\right)=t$ is finite. Thus $\left(a^{s}\right)^{t}=a^{s t}=e$. Hence $\mathrm{o}(a)$ divides $s t$, and $a \in H$.

Question 6: [4 + 3 marks]

Let G be a finite group of order (15) ${ }^{2}$.
a) Determine the number of Sylow 3-subgroups and the number Sylow 5-subgroups of G.
b) Is G a simple group?

Solution:

a) We have $|G|=(3)^{2}(5)^{2}$. Let N_{3} the number of Sylow 3-subgroups and N_{5} the number of Sylow 5-subgroups.
By application of the third Sylow's Theorem, N_{3} and N_{5} are divisors of $|G|$, so the possible of their values are

$$
1,3,3^{2}, 5,(3)(5),(3)^{2} 5,5^{2}, 3(5)^{2} \text { and }(3)^{2}(5)^{2}
$$

- As $N_{3} \equiv 1(\bmod 3)$, then $N_{3}=1$ or $N_{3}=25$.
- As $N_{5} \equiv 1(\bmod 5)$, then $N_{5}=1$.
b) According to (a), G has a unique Sylow 5-subgroup P. By application of the second Sylow's Theorem, we can say that $g^{-1} P g$ is also a Sylow 5-subgroup for every $g \in G$. Thus, $g^{-1} P g=P$, and P is a normal subgroup of G of order 25. Hence, G is not simple.

