University of Bahrain College of Science Mathematics department Second Semester 2008-2009

Final Examination

Math 311 Date: 20 / 06 / 2009 Max. Marks: 50 Duration: 2 hours

Name:		
ID Number:		

Instructions:

- 1) Please check that this test has 6 questions and 7 pages.
- 2) Write your name, student number, and section in the above box.

Question	Max. Marks	Marks obtained
1	9	
2	9	
3	9	
4	9	
5	7	
6	7	
Total	50	

Good Luck

Question 1: [9 marks]

a) Determine the order of the element (5,6,3) in the group $\mathbb{Z}_{15} \times \mathbb{Z}_{30} \times \mathbb{Z}_{12}$.

Solution:

In
$$\mathbb{Z}_{15}$$
, $o(5) = \frac{15}{\gcd(5,15)} = 3$. In \mathbb{Z}_{60} , $o(6) = \frac{30}{\gcd(6,30)} = 5$. In \mathbb{Z}_{12} , $o(3) = \frac{12}{\gcd(3,12)} = 4$

Thus, in $\mathbb{Z}_{15} \times \mathbb{Z}_{60} \times \mathbb{Z}_{12}$, we have o(5,6,3) = lcm(3,5,4) = 60.

b) Let *G* be a group of order 17. Show that $G \cong \mathbb{Z} / 17\mathbb{Z}$.

Solution:

As |G| = 17 is a prime number, then *G* is cyclic. If *a* is a generator of *G*, then the function $f: \mathbb{Z} \to G$ defined by $f(n) = a^n$ is an epimomorphism. Moreover, we have $\operatorname{Ker}(f) = \{n \in \mathbb{Z} : f(n) = e\} = \{n \in \mathbb{Z} : a^n = e\} = \{n \in \mathbb{Z} : o(a) = 17 / n\} = 17\mathbb{Z}$. By the first isomorphic theorem, we get $\mathbb{Z}/\operatorname{Ker}(f) \cong G$, that is $\mathbb{Z}/17\mathbb{Z} \cong G$.

c) Let $f: G \to G'$ be homomorphism of groups. If |G| = 7 and |G'| = 11, prove that f is the trivial homomorphism defined by f(x) = e' for every $x \in G$.

Solution:

As |G| = 7 is a prime number, then G is cyclic. If a is a generator of G, then

 $G = \langle a \rangle$ with o(a) = 7. Let $x \in G$.

- If x = e, then f(e) = e'.

- If $x \neq e$, then o(f(x)) / |G'| = 11. Also we know that o(f(x)) / o(x) = 7, so o(f(x)) divides gcd(7,11) = 1. Thus o(f(x)) = 1, that is f(x) = e'.

Hence f(x) = e' for every $x \in G$.

Question 2 [9 marks]

d) Let *G* be a finite group and *H* a subgroup of *G* such that 3 < (G : H) < 9. If |H| = 5, find the possible values of |G|.

Solution:

By Lagrange's theorem, we have |G| = (G : H) |H| = 5 (G : H), As 3 < (G : H) < 9, then 15 < |G| < 25. Therefore, the possible values of |G| is 20 or 25 or 30 or 35 or 40.

e) Let *H* and *K* be two subgroups of *G* such that |H| is a prime number. Prove that $H \cap K = \{e\}$ or $H \subseteq K$.

Solution:

 $H \cap K$ is a subgroup of *H*. By Lagrange's theorem, we have $|H \cap K|$ divides |H|. Since |H| is a prime number, then $|H \cap K| = 1$ or $|H \cap K| = |H|$.

- If $|H \cap K| = 1$, then $H \cap K = \{e\}$.
- If $|H \cap K| = |H|$, then $H \cap K = H$, so $H \subseteq K$.
- **f**) $H = \{ a + b\sqrt{3} : a, b \in \mathbb{Z} \}$ is a subgroup of $(\mathbb{R}, +)$. Is it cyclic?

Solution:

Suppose, by way of contradiction, that *H* is cyclic generated by an element $\delta = u + v\sqrt{3}$, where *a*, *b* $\in \mathbb{Z}$. As $1 = 1 + 0\sqrt{3} \in H$, then $1 = r\delta = r(u + v\sqrt{3})$ for a positive integer *r*. By comparison, we get $u = \frac{1}{r}$ and v = 0, so $\delta = \frac{1}{r}$ Also $\sqrt{3} \in H$, then $\sqrt{3} = 0 + 1\sqrt{3} \in H$

H, then $\sqrt{3} = s\delta = \frac{s}{r} \in \mathbb{Q}$, a contradiction.

Question 3: [9 marks]

Let
$$G = \left\{ \begin{bmatrix} 1-r & -r \\ r & 1+r \end{bmatrix} : r \in \mathbb{Z} \right\}$$

- **a**) Prove that *G* is a subgroup of the Linear group GL(2).
- **b**) Show that $f: G \to \mathbb{Z}$ defined by $f(\begin{bmatrix} 1-r & -r \\ r & 1+r \end{bmatrix}) = r$ is an isomorphism.
- c) Deduce that G is cyclic and find its generators.

Solution: Set $M(r) = \begin{bmatrix} 1-r & -r \\ r & 1+r \end{bmatrix}$.

a) It is clear that *G* is a subset of GL(2) since every element of *G* is invertible (indeed, det(M(r)) = 1) and that *G* is non-empty since $I = M(0) \in G$. To show that $G \leq GL(2)$, it suffices to verify the following easy operations:

$$\forall \mathbf{r}, \mathbf{s} \in \mathbb{Z}, M(r) \cdot M(s) = M(r+s) \text{ and } M(r)^{-1} = M(-r).$$

b)

f is a homomorphism: Let M(r), $M(s) \in G$, we have

$$f(M(r) \cdot M(s)) = f(M(r+s) = r+s = f(M(r)) f(M(s)).$$

f is onto: For every $r \in \mathbb{Z}$, we have r = f(M(r)), where $M(r) \in G$.

f is one-to-one:

$$\operatorname{Ker}(f) = \{ M(r) \in G : f(M(r)) = 0 \}$$
$$= \{ M(r) \in G : r = 0 \}$$
$$= \{ M(0) \} = \{ I \}$$

c) We have $G \cong \mathbb{Z}$. As \mathbb{Z} is cyclic and has two generators 1 and -1, then G is cyclic and

has two generators :
$$M(1) = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$$
 and $M(-1) = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$

<u>Question 4:</u> [9 marks]

Let *f* be the homomorphism $f: \mathbb{Z} \to S_4$ of groups such that $f(1) = (1 \ 3)(3 \ 4)$.

- a) Give the definition of *f*.
- **b**) Find K = Ker(f) and \mathbb{Z} / K .
- c) Find Im(f) and the bijective correspondence between \mathbb{Z}/K and Im(f).

Solution:

a) Let $\sigma = (1 \ 3)(3 \ 4) = (1 \ 3 \ 4)$. For $n \in \mathbb{Z}$, we have $f(n) = [f(1)]^n = \sigma^n$.

b) First note that $o(\sigma) = 3$. Then

$K = \operatorname{Ker}(f)$	=	$\{ n \in \mathbb{Z} : f(n) = e \}$
	=	$\{n \in \mathbb{Z}: \sigma^n = e\}$
	=	$\{n \in \mathbb{Z}: o(\sigma) / n\}$
	=	$\{n \in \mathbb{Z}: 3 / n\}$

Thus $K = n\mathbb{Z}$ and $\mathbb{Z}/K = \mathbb{Z}/n\mathbb{Z}$.

c) We have
$$f(0) = e$$
, $f(1) = \sigma = (1 \ 3)(3 \ 4)$ and $f(2) = \sigma^2 = (1 \ 4 \ 3)$. Then

$$Im(f) = \{f(0), f(1), f(2)\} = \{e, \sigma = (1 \ 3 \ 4), \sigma^2 = (1 \ 4 \ 3)\}$$

d) The function $\overline{f}: \mathbb{Z}/n\mathbb{Z}: \to \text{Im}(f)$ defined by

$$\bar{f}(\bar{0}) = e, \ \bar{f}(\bar{1}) = (134) \text{ and } \bar{f}(\bar{2}) = (143).$$

is the bijective correspondence between \mathbb{Z}/K and Im(f).

Question 5: [3+2+2 marks]

Let *G* be an Abelian group and $H = \{a \in G : o(a) \text{ is finite } \}$.

a) Prove that H is a normal subgroup of G.

- **b**) Prove that if $a \in H$, then o(aH) divides o(a).
- c) Deduce o(aH) is finite if and only if $a \in H$.

Solution:

a) Since G is an Abelian group, it suffices to show that H is a subgroup of G. It is clear that o(e) = 1, so $e \in H$ and H is non-empty.

Let x, $y \in H$. Then $o(x) = r < \infty$ and $o(y) = s < \infty$. We have

(i) $(xy)^{rs} = [(x)^r]^s [(y)^s]^r = (e)^s (e)^r = e$, so o(xy) / rs. Thus $o(xy) < \infty$, and $xy \in H$.

(ii) $(x^{-1})^r = [(x)^r]^{-1} = (e^{-1})^r = e$, so $o(x^{-1}) / r$. Thus $o(x^{-1}) < \infty$, and $x^{-1} \in H$.

b) Let o(a) = r. We have $(aH)^r = a^r H = eH = H$, so o(aH) divides o(a).

c) In light of the point (b), we can say that, if o(a) is finite, then o(aH) is finite. Conversely, suppose that o(aH) = s is finite. Then $(aH)^s = a^s H = H$, so $a^s \in H$. It follows, by definition of elements H, that $o(a^s) = t$ is finite. Thus $(a^s)^t = a^{st} = e$. Hence o(a) divides *st*, and $a \in H$.

Question 6: [4 + 3 marks]

Let G be a finite group of order $(15)^2$.

a) Determine the number of Sylow 3-subgroups and the number Sylow 5-subgroups of G.

b) Is *G* a simple group?

Solution:

a) We have $|G| = (3)^2 (5)^2$. Let N₃ the number of Sylow 3-subgroups and N₅ the number of Sylow 5-subgroups.

By application of the third Sylow's Theorem, N_3 and N_5 are divisors of |G|, so the possible of their values are

1, 3,
$$3^2$$
, 5, (3)(5), (3)²5, 5^2 , 3(5)² and (3)²(5)².

- As $N_3 \equiv 1 \pmod{3}$, then $N_3 \equiv 1$ or $N_3 \equiv 25$.

- As $N_5 \equiv 1 \pmod{5}$, then $N_5 \equiv 1$.

b) According to (a), *G* has a unique Sylow 5-subgroup *P*. By application of the second Sylow's Theorem, we can say that $g^{-1}Pg$ is also a Sylow 5-subgroup for every $g \in G$. Thus, $g^{-1}Pg = P$, and *P* is a normal subgroup of *G* of order 25. Hence, *G* is not simple.