University of Bahrain
College of Science
Department of Mathematics
First Semester 2010-2011
MATH 311
(Group Theory)
Test 1
Sunday 7 November 2010
Instructor: Dr Khalid Amin 13:00-14:00

Instructions

1. Please write your name and your university identity number in the space provided above.
2. Make sure that your copy of this test consists of 6 pages and 5 different
questions.
3. In Question 1, you first mark your answers by T(True) or F (False)
and then justify your claims.
In Questions 4-5, you must show the details of your solutions to the problems.

	Maximum Points Possible	You Scored
Question 1	05	
Question 2	04	
Question 3	05	
Question 4	07	
Question 5	04	
Total	25	

Question 1 [05 points]

Mark each of the following statements as \mathbf{T} (True) or \mathbf{F} (False).

Briefly explain why.

1. The empty set can be considered a group under any binary
operation. \qquad .
2. Any group has at most two subgroups.
3. $\mathbb{N}^{+}=\{1,2,3, \ldots\}$ is a group under the ordinary addition.
4. Any group with exactly two generators must be infinite.
5. \mathbb{Q} is a cyclic group .

Question 2 [04 points]

In the following, give an example or say no such a thing exists.

1. An infinite abelian group.
2. A finite non-abelian group.
3. A cyclic group of order 2010.
4. A non-abelian group of order 24.

Question 3 [05 points]

Construct the Cayley Table for a group $G=\{e, a, b\}$ of order 3.

Question 4 [07 points]

Let

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 7 & 8 & 9 & 4 & 5 & 2 & 1 & 6
\end{array}\right)
$$

(a) Write σ as a product of disjoint cycles.
(b) Is σ even or an odd permutation?
(c) Find the order of σ.
(d) Find the inverse of σ.
(e) Compute σ^{-2010}.

Question 5 [04 points]

Let H and K be subgroups of a group G.
(a) Show that in general $H K$ is not a subgroup of G.
(b) Give two conditions under which $H K$ is a subgroup of
G.

