University of Bahrain College of Science Mathematics department Second Semester 2003-2004

Final Examination

Math 312 Duration: 2 hours Max. Mark: 50 Date: 19th June, 2004

Question 1: [19 marks]

Let *R* be a commutative ring with identity 1 and *J* a nonzero ideal of *R*. Consider the cartesian product $S = R \times J$. Define on *S* the following binary operations:

$$(r, a) + (s, b) = (r + s, a + b)$$

$$(r, a) \cdot (s, b) = (r s, r b + s a)$$

- a) Prove that *S* is a commutative ring with identity.
- **b**) Is *S* an integral domain ?

For an ideal *I* of *R*, we define $T(I) = I \times J$.

- c) Prove that T(I) is an ideal of *S*.
- **d**) Prove that the function $f: S \to R / I$ defined by $f(r, a) = \overline{r}$ is a homomorphism.
- e) Show that $S / T(I) \cong R/I$.
- f) Deduce that I is a maximal ideal of R if and only if T(I) is a maximal ideal of S.
- g) Is $5Z \times Z$ a maximal ideal of $Z \times Z$?

Question 2: [12 marks]

In the polynomial ring $Z_3[X]$, consider the polynomial $Q = X^2 + 2X + 2$.

- **a**) Prove that Q is an irreducible polynomial of $Z_3[X]$.
- **b**) Show that $K = Z_3[X]/(Q)$ is a field.
- c) Set $u = \overline{X}$ the equivalence class of X modulo (Q), find all elements of K.
- **d**) Simplify $(1 + 2u)^3$ in K.

Question 3: [12 marks]

Let *R* be a commutative ring with identity 1, *I* be an ideal of *R*. and $f : R \to R$ an onto homomorphism. Define $\sqrt{I} = \{ x \in R : x^n \in I \text{ for some positive integer } n \}$

- **a**) Prove that \sqrt{I} is an ideal of *R*.
- **b**) Prove that $\sqrt{\sqrt{I}} = \sqrt{I}$.
- c) Prove that $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$ for every two ideals *I* and *J* of *R*.
- **d**) Prove that if, $\operatorname{Ker}(f) \subseteq I$, then $f(\sqrt{I}) = \sqrt{f(I)}$.

Question 4: [7 marks]

Prove that $R = \mathbb{Z}[\sqrt{2}]$ is a Euclidean domain

(Consider the function $\delta: R - \{0\} \rightarrow IN$ defined by $\delta(a + b\sqrt{2}) = |a^2 - 2b^2|$)