University of Bahrain
College of Science
Mathematics department
First Semester 2007-2008

Final Examination

Math 312
Duration: 2 hours
Date: 23 / 01 / 2008
Max. Mark: 50
Name:
ID Number:
Section:

Instructions:

1) Please check that this test has 5 questions and 7 pages.
2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
$\mathbf{1}$	$\mathbf{8}$	
2	$\mathbf{6}$	
3	12	
4	12	
5	12	
Total	50	

Good Luck

Question 1: [3+3+2 marks]

a) Let x be a nonzero element of a ring R with identity such that $x^{3}=0$. Show that $u=1-x$ is a unit of R, and find the principal ideal of R generated by u.
b) Let R be an Euclidean domain with degree function δ. Show that the function $\delta^{\prime}: R-\{0\} \rightarrow \mathbf{N}$, defined by $\delta^{\prime}(x)=a \delta(x)$ is also a degree function for every $a>0$.
c) Find the set of units of the polynomial ring $R[x]$, where $R=\mathbf{Z}[\sqrt{-5}]$.

Question 2: [3+3 marks]

a) Let p be a prime number. Show that p is not irreducible in $\mathbf{Z}[i]$ if and only if p can be written as $p=a^{2}+b^{2}$ for some integers a and b.
b) Let M and N be two distinct maximal ideals of a ring R. Show that $M+N=R$.

Question 3: [4+4+4 marks]

Let $f(x)=x^{2}+a x+b \in \mathbf{Z}_{2}[x]$.
a) Prove that $f(x)$ is irreducible if and only if $a=b=1$.
b) Suppose that $a=b=1$. Prove that $F=\mathbf{Z}_{2}[x] /(f(x))$ is a field and finds its elements.
c) Give the addition and multiplication tables of F.

Question 4: [3+3+3+3 marks]

Let $\varphi: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z} / \mathbf{n} \mathbf{Z}$ be the function defined by $\varphi(x, y)=\bar{x}$.
a) Prove that φ is a homomorphism.
b) Prove that $\operatorname{Ker}(\varphi)=\boldsymbol{n} \mathbf{Z} \times \mathbf{Z}$.
c) Show that $(\mathbf{Z} \times \mathbf{Z}) /(\boldsymbol{n} \mathbf{Z} \times \mathbf{Z}) \cong \mathbf{Z} / \boldsymbol{n} \mathbf{Z}$.
d) Show that $\boldsymbol{n} \mathbf{Z} \times \mathbf{Z}$ is a maximal ideal of $\mathbf{Z} \times \mathbf{Z}$ if and only if \boldsymbol{n} is a prime number.

Question 5: $\quad[3+3+3+3$ marks]

Let $\boldsymbol{I}=\{p(x) \in \mathbf{Z}[x]: p(0)$ is even $\}$.
a) Show that \boldsymbol{I} is an ideal of $\mathbf{Z}[x]$.
b) Let $f(\mathrm{x})=2 x^{3}+3 x+6$. Show that $f(x)$ is irreducible in $\mathbf{Z}[x]$, and that $f(x) \in \boldsymbol{I}$.
c) Show that, if \boldsymbol{I} is a principal ideal, then \boldsymbol{I} is generated by $f(x)$.
d) Conclude that \boldsymbol{I} can not be principal, and R is not a PID.

