University of Bahrain College of Science Mathematics department First Semester 2007-2008

Final Examination

Math 312 Duration: 2 hours Date: 23 / 01 / 2008 Max. Mark: 50

Name:

ID Number:

Section:

Instructions:

- 1) Please check that this test has 5 questions and 7 pages.
- 2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
1	8	
2	6	
3	12	
4	12	
5	12	
Total	50	

Good Luck

Question 1: [3+3+2 marks]

a) Let x be a nonzero element of a ring R with identity such that $x^3 = 0$. Show that u = 1 - x is a unit of R, and find the principal ideal of R generated by u.

b) Let *R* be an Euclidean domain with degree function δ . Show that the function $\delta' : R - \{0\} \rightarrow \mathbf{N}$, defined by $\delta'(x) = a \,\delta(x)$ is also a degree function for every a > 0.

c) Find the set of units of the polynomial ring R[x], where $R = \mathbb{Z}[\sqrt{-5}]$.

Question 2: [3+3 marks]

a) Let *p* be a prime number. Show that *p* is not irreducible in $\mathbb{Z}[i]$ if and only if *p* can be written as $p = a^2 + b^2$ for some integers *a* and *b*.

b) Let *M* and *N* be two distinct maximal ideals of a ring *R*. Show that M + N = R.

<u>Question 3:</u> [4+4+4 marks]

- Let $f(x) = x^2 + a x + b \in \mathbf{Z}_2[x]$.
- **a**) Prove that f(x) is irreducible if and only if a = b = 1.
- **b**) Suppose that a = b = 1. Prove that $F = \mathbb{Z}_2[x]/(f(x))$ is a field and finds its elements.
- c) Give the addition and multiplication tables of *F*.

Question 4: [3+3+3+3 marks]

Let $\phi : \mathbf{Z} \times \mathbf{Z} \to \mathbf{Z} / \mathbf{nZ}$ be the function defined by $\phi(x, y) = \overline{x}$.

- **a**) Prove that ϕ is a homomorphism.
- **b**) Prove that $\operatorname{Ker}(\varphi) = \mathbf{nZ} \times \mathbf{Z}$.
- c) Show that $(\mathbb{Z} \times \mathbb{Z}) / (n\mathbb{Z} \times \mathbb{Z}) \cong \mathbb{Z} / n\mathbb{Z}$.
- d) Show that $n\mathbf{Z} \times \mathbf{Z}$ is a maximal ideal of $\mathbf{Z} \times \mathbf{Z}$ if and only if **n** is a prime number.

<u>Question 5</u>: [3+3+3+3 marks]

Let $I = \{p(x) \in \mathbb{Z}[x] : p(0) \text{ is even } \}.$

- **a**) Show that I is an ideal of Z[x].
- **b**) Let $f(x) = 2x^3 + 3x + 6$. Show that f(x) is irreducible in $\mathbb{Z}[x]$, and that $f(x) \in I$.
- c) Show that, if I is a principal ideal, then I is generated by f(x).
- **d**) Conclude that *I* can not be principal, and *R* is not a PID.