University of Bahrain College of Science Mathematics department First Semester 2008-2009

Final Examination

Math 312 Duration: 2 hours Date: 22 / 01 / 2009 Max. Mark: 50

Name:

ID Number:

Section:

Instructions:

- 1) Please check that this test has 6 questions and 8 pages.
- 2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
1	8	
2	8	
3	8	
4	8	
5	8	
6	10	
Total	50	

Good Luck

Question 1: [4 + 4 marks]

a) Let R be an integral domain with identity. Prove that if p is irreducible and u is a unit, then pu is irreducible.

b) Let $f(x) = x^4 + n x^3 + x^2 + n \in \mathbb{Z}_7[x]$. Find *n* if the polynomial g(x) = x - 2 divides f(x).

Question 2: [4 + 4 marks]

a) Find all irreducible polynomials of degree 2 in the polynomial rings $\mathbb{Z}_2[x]$.

b) Show that, if a + bi is prime in $\mathbb{Z}[i]$, then a - bi is prime in $\mathbb{Z}[i]$.

Question 3: [4 + 4 marks]

a) Let *R* be an Euclidean domain with degree function δ . Prove that if $\delta(1) \ge -2$, then the function $\delta': R - \{0\} \rightarrow \mathbb{N}$ defined by $\delta'(x) = \delta(x) + 2$ is also a degree function.

b) Let $P = X^2 + 2X + 2$ be a polynomial of $\mathbb{Z}_3[X]$. Show that $\mathbb{Z}_3[X]/(P)$ is a field and find its elements.

Question 4 [4 + 4 marks]

a) Let *R* be division ring. Prove that the center Z(R) of *R* is a field, where Z(R) is defined by $Z(R) = \{a \in R : a x = x a \text{ for all } x \in R\}.$

b) Let *R* be a Boolean ring and *P* be a prime ideal of *R*. Show that *R*/*P* has only two elements (use the fact that $x^2 = x$ for all $x \in R$). Then conclude that *P* is a maximal ideal.

Question 5 [4 + 4 marks]

Let R be a principal ideal domain and P be a prime ideal of R.

- **a**) Prove that *P* is generated by a prime element.
- **b**) Prove that *P* is a maximal ideal.

Question 6 [3+3+4 marks]

Let *R* be the set of all upper triangular matrices $R = \{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} : x, y \in \mathbb{Z} \}.$

a) Prove that *R* is a ring with identity.

b) Prove that
$$J = \{ \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix} : a \in \mathbb{Z} \}$$
 is an ideal of *R*.

c) By considering the function $f: R \to \mathbb{Z} \times \mathbb{Z}$ defined by $f(\begin{bmatrix} x & y \\ 0 & z \end{bmatrix}) = (x, z)$, show that J

is not a prime ideal of R.