University of Bahrain
College of Science
Mathematics department
First Semester 2008-2009

Final Examination
Math 312
Duration: 2 hours
Date: 22 / 01 / 2009
Max. Mark: 50
Name:

ID Number:
Section:

Instructions:

1) Please check that this test has 6 questions and 8 pages.
2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
$\mathbf{1}$	$\mathbf{8}$	
2	$\mathbf{8}$	
3	8	
4	8	
5	$\mathbf{8}$	
6	50	
Total		

Good Luck

Question 1: [4 + 4 marks]

a) Let R be an integral domain with identity. Prove that if p is irreducible and u is a unit, then $p u$ is irreducible.
b) Let $f(x)=x^{4}+n x^{3}+x^{2}+n \in \mathbb{Z}_{7}[\mathrm{x}]$. Find n if the polynomial $g(x)=x-2$ divides $f(x)$.

Question 2: [4 + 4 marks]

a) Find all irreducible polynomials of degree 2 in the polynomial rings $\mathbb{Z}_{2}[x]$.
b) Show that, if $a+b i$ is prime in $\mathbb{Z}[i]$, then $a-b i$ is prime in $\mathbb{Z}[i]$.

Question 3: [4 + 4 marks]

a) Let R be an Euclidean domain with degree function δ. Prove that if $\delta(1) \geq-2$, then the function $\delta^{\prime}: R-\{0\} \rightarrow \mathbb{N}$ defined by $\delta^{\prime}(x)=\delta(x)+2$ is also a degree function.
b) Let $P=X^{2}+2 X+2$ be a polynomial of $\mathbb{Z}_{3}[X]$. Show that $\mathbb{Z}_{3}[X] /(P)$ is a field and find its elements.

Question 4 [4 + 4 marks]

a) Let R be division ring. Prove that the center $Z(R)$ of R is a field, where $Z(R)$ is defined by $Z(R)=\{a \in R: a x=x a$ for all $x \in R\}$.
b) Let R be a Boolean ring and P be a prime ideal of R. Show that R / P has only two elements (use the fact that $x^{2}=x$ for all $x \in R$). Then conclude that P is a maximal ideal.

Question 5 [4 + 4 marks]

Let R be a principal ideal domain and P be a prime ideal of R.
a) Prove that P is generated by a prime element.
b) Prove that P is a maximal ideal.

Question 6 [$3+3+4$ marks]

Let R be the set of all upper triangular matrices $R=\left\{\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right]: x, y \in \mathbb{Z}\right\}$.
a) Prove that R is a ring with identity.
b) Prove that $J=\left\{\left[\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right]: a \in \mathbb{Z}\right\}$ is an ideal of R.
c) By considering the function $f: R \rightarrow \mathbb{Z} \times \mathbb{Z}$ defined by $f\left(\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right]\right)=(x, z)$, show that J is not a prime ideal of R.

