University of Bahrain College of Science Mathematics department First Semester 2009-2010

Final Examination

<u>Math 312</u> <u>Duration: 2 hours</u> <u>Date: 19 / 01 / 2010</u> <u>Max. Mark: 50</u>

Name:

ID Number:

Section:

Instructions:

- 1) Please check that this test has 3 questions and 9 pages.
- 2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
Q1	13	
Q2- Part I	7	
Q2- Part II	8	
Q3- Part I	10	
Q3- Part II	12	
Total	50	

Good Luck

<u>Question 1:</u> [2+3+2+3+3 marks]

Let $Q = X^2 + X + 1$ be a polynomial of $\mathbf{Z}_2[X]$.

a) Show that $K = \mathbb{Z}_2[X]/(Q)$ is a field.

b) Let $u = \overline{X}$ be the equivalence class of *X* modulo (*Q*). Find the elements of *K* and give the addition and multiplication tables of *K*.

c) Simplify $(1+u)^3$ in K.

d) Find a prime number p so that the polynomial $f(X) = X^4 + X^3 + 3X + (p - 2)$ is divisible by X - 2 in $\mathbb{Z}_p[X]$.

e) Find
$$GCD(X^4 + 2X^3 + 2, 2X^2 + X + 1)$$
 in $\mathbb{Z}_5[X]$.

Question 2:

Part I: [2+2+3 marks]

Let *R* be the integral domain $R = \mathbb{Z}[\sqrt{-2}]$ and $N : R \to \mathbb{N}$ the function defined by $N(a + b\sqrt{-2}) = a^2 + 2b^2$.

- **a**) Find the units of *R*.
- **b**) Prove that if $N(\alpha)$ is a prime number, then α is irreducible.
- c) Show that $\alpha = 5$ is irreducible, but $N(\alpha)$ is not a prime number ?

Part II: [2+4+2 marks]

- **d**) Prove that $R = \mathbb{Z}[\sqrt{-2}]$ is an Euclidean domain with $\delta(\alpha) = N(\alpha)$ for every $\alpha \neq 0$.
- e) Let α and β be two nonzero elements of *R*. Prove that if α divides β and $N(\alpha) = N(\beta)$, then $\alpha = \pm \beta$.
- **f**) Let $\gamma = 1 + 3\sqrt{-2}$. Prove that the ideal (γ) is maximal in *R*.

Question 3:

Part I: [5+2+3 marks]

Let *R* be a commutative ring with identity 1 and *J* a nonzero ideal of *R*. Consider the cartesian product $S = R \times J$. Define on *S* the following binary operations:

$$(r, a) + (s, b) = (r + s, a + b)$$

$$(r, a) \cdot (s, b) = (r s, r b + s a)$$

- **a**) Prove that *S* is a commutative ring with identity.
- **b**) Is *S* an integral domain ?
- c) Let *H* be a subring of *R*. Prove that $H \times J$ is a subring of *S*

Part II: [3+2+3+2+2=12 marks]

For an ideal *I* of *R*, we define $T(I) = I \times J$.

- **d**) Prove that T(I) is an ideal of *S*.
- e) Prove that the function $f: S \to R / I$ defined by $f(r, a) = \overline{r}$ is a homomorphism.
- **f**) Show that $S / T(I) \cong R/I$.
- g) Deduce that I is a maximal ideal of R if and only if T(I) is a maximal ideal of S.
- **h**) Is $4\mathbf{Z} \times \mathbf{Z}$ a maximal ideal of $\mathbf{Z} \times \mathbf{Z}$?