University of Bahrain
College of Science
Mathematics department
First Semester 2009-2010

Final Examination

Math 312
Duration: 2 hours
Date: 19 / 01 / 2010
Max. Mark: 50
Name:
ID Number:
Section:

Instructions:

1) Please check that this test has $\mathbf{3}$ questions and 9 pages.
2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
Q1	13	
Q2- Part I	$\mathbf{7}$	
Q2- Part II	$\mathbf{8}$	
Q3- Part I	$\mathbf{1 0}$	
Q3- Part II	$\mathbf{1 2}$	
Total	50	

Good Luck

Question 1: $[2+3+2+3+3$ marks]

Let $Q=X^{2}+X+1$ be a polynomial of $\mathbf{Z}_{2}[X]$.
a) Show that $K=\mathbf{Z}_{2}[X] /(Q)$ is a field.
b) Let $u=\bar{X}$ be the equivalence class of X modulo (Q). Find the elements of K and give the addition and multiplication tables of K.
c) Simplify $(1+u)^{3}$ in K.
d) Find a prime number p so that the polynomial $f(X)=X^{4}+X^{3}+3 X+(p-2)$ is divisible by $X-2$ in $\mathbf{Z}_{p}[X]$.
e) Find $\operatorname{GCD}\left(X^{4}+2 X^{3}+2,2 X^{2}+X+1\right)$ in $\mathbf{Z}_{5}[X]$.

Question 2:

Part I: [2+2+3 marks]

Let R be the integral domain $R=\mathbf{Z}[\sqrt{-2}]$ and $N: R \rightarrow \mathbf{N}$ the function defined by
$N(a+b \sqrt{-2})=a^{2}+2 b^{2}$.
a) Find the units of R.
b) Prove that if $N(\alpha)$ is a prime number, then α is irreducible.
c) Show that $\alpha=5$ is irreducible, but $N(\alpha)$ is not a prime number?

Part II: [2+4+2 marks]

d) Prove that $R=\mathbf{Z}[\sqrt{-2}]$ is an Euclidean domain with $\delta(\alpha)=N(\alpha)$ for every $\alpha \neq 0$.
e) Let α and β be two nonzero elements of R. Prove that if α divides β and $N(\alpha)=N(\beta)$, then $\alpha= \pm \beta$.
f) Let $\gamma=1+3 \sqrt{-2}$. Prove that the ideal (γ) is maximal in R.

Question 3:

Part I: [5+2+3 marks]

Let R be a commutative ring with identity 1 and J a nonzero ideal of R. Consider the cartesian product $S=R \times J$. Define on S the following binary operations:

$$
\begin{aligned}
& (r, a)+(s, b)=(r+s, a+b) \\
& (r, a) \cdot(s, b)=(r s, r b+s a)
\end{aligned}
$$

a) Prove that S is a commutative ring with identity.
b) Is S an integral domain?
c) Let H be a subring of R. Prove that $H \times J$ is a subring of S

Part II: [3+2+3+2+2=12 marks]

For an ideal I of R, we define $T(I)=I \times J$.
d) Prove that $T(I)$ is an ideal of S.
e) Prove that the function $f: S \rightarrow R / I$ defined by $f(r, a)=\bar{r}$ is a homomorphism.
f) Show that $S / T(I) \cong R / I$.
g) Deduce that I is a maximal ideal of R if and only if $T(I)$ is a maximal ideal of S.
h) Is $4 \mathbf{Z} \times \mathbf{Z}$ a maximal ideal of $\mathbf{Z} \times \mathbf{Z}$?

