University of Bahrain College of Science Department of Mathematics First Semester 2010-2011 Math 352 Test 1 Tuesday, October 26 2010 09:00 - 10:00

Nam	e
ID#	

Instructions

1. Please write your name and your university identity number in the spaces

provided above.

2. Make sure that your copy of this test consists of $6\ \text{pages}$ and $5\$

different questions.

3. In Question 1, you mark your answer by writing **T (True)** if the

statement is true and **F(False)** if the statement is false. In Questions 4-5,

you must provide the details of your solutions to the problems.

	Maximum Points Possible	You Scored
Question 1	5	
Question 2	5	
Question 3	5	
Question 4	5	
Question 5	5	
Total	25	

Question 1 [05 points]

In the following, if the statement is true, briefly explain why. If false, give a counter example.

(a) if x, y and z are integers such that $x \mid z$ and $y \mid z$, then

 $xy \mid z. \begin{bmatrix} ---- \end{bmatrix}.$

(b) Any subset of non-negative integers has a least element. $\begin{bmatrix} --- \\ - \end{bmatrix}$.

(c) 1 can be written as a linear combination of 77 and 78. $\begin{bmatrix} ---- \end{bmatrix}$.

(d) If *p* is a prime and $a_1, a_2, ..., a_n$ are integers such that $p \mid a_1a_2...a_n$, then $p = a_k$ for some $k, 1 \le k \le n$.

[----].

(e) $lcm[36, 90, 72] = 3240. \begin{bmatrix} ---- \end{bmatrix}$.

Question 2 [05 points]

(a) State the Division Algorithm.

(b) Show that the square of any integer is of the form 3m or 3m + 1.

(c) Show that for any integer n, $3n^2 - 1$ cannot be a perfect square.

Question 3 [05 points]

Show that for any integer n, 8n + 3 and 5n + 2 are relatively prime.

Question 4 [05 points]

Use Mathematical Induction to prove that

$$\sum_{k=1}^{n} (-1)^{k-1} k^2 = (-1)^{n-1} \frac{n(n+1)}{2}.$$

Question 5 [05 points]

Mohsin Air offers three types of tickets on their Bahrain-Doha- Istanbul

flights. First-class tickets are BD140, Second-class tickets are BD110

and standby tickets are BD78. If 69 passengers pay a total of BD6548

for a particular flight, how many of each type were sold?