University of Bahrain College of Science Mathematics department First Semester 2005

Final Examination

Math 352 Date: 31 / 12 / 2005 Max. Marks: 50 Duration: 2 hours

Name:	
ID Number:	

Instructions:

- 1) Please check that this test has 4 questions and 5 pages.
- 2) Write your name, student number, and section in the above box.

Question	Max. Marks	Marks obtained
1	14	
2	12	
3	12	
4	12	
Total	50	

Good Luck

Question 1: [7 + 7 marks]

a) Find the remainder when $5^{16n+3} + 2(14!)$ is divided by 17.

b) Assuming that 594 divides the integer 465*X*26*Y*4, find the digits *X* and *Y*.

Question 2: [6 + 6 marks]

- Let a, b, c be three positive integers.
- a) Prove that if gcd(a, b) = 2 and gcd(a, c) = 3 and a divides bc, then a divides 6.

b) Prove that if gcd(a, b) = 1, then $gcd(a + b, a^2 + a b + b^2) = 1$

Question 3: [6+6 marks]

a) Divide 200 into two summands such that one is divisible by 5 and the other by 13

b) Show that, for any integer a, the integer $a^2 + a + 5$ ends in one of the digits 1, 5, or 7.

<u>Question 4:</u> [6 + 6 marks]

a) Use Chinese Remainder Theorem to find an integer *a* such that 4/a + 1, 9/a + 2, 25/a + 3

b) Let p be an odd prime number. Prove that 2p divides $a^{2p} - a^2 - a^p + a$ for any integer a.