University of Bahrain College of Science Mathematics department First Semester 2006-2007

Final Examination

Math 352 Date: 13 / 01 / 2005 Max. Marks: 50 Duration: 2 hours

Name:	
ID Number:	

Instructions:

- 1) Please check that this test has 5 questions and 6 pages.
- 2) Write your name, student number, and section in the above box.

Question	Max. Marks	Marks obtained
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Good Luck

<u>Question 1:</u> [5 + 5 marks]

a) Let *a* and *b* be two integers such that gcd(a,52) = gcd(b,52) = 1. Prove that $a^{12} - b^{12}$ is divisible by 52.

b) If gcd(a,b) = 2, find $lcm(a^2b + a, ba^2 + b)$.

<u>Question 2:</u> [5 + 5 marks]

a) Find the remainder when $2^{2^n} + 1$ is divided by 12, for $n \ge 1$.

b) Find an integer having the remainder 2, 3, 4, 5 when dividing by 3, 4, 5, 6 respectively.

Question 3: [5 + 5 marks]

a) Find all prime numbers p for which 7p + 1 is a perfect cube.

b) Divide 264 into the sum of two positive integers such that one is divisible

by 24 and the other by 9.

Question 4: [5 + 5 marks]

Let $A = a (17)^{2n+1} + (27)^{2n+2}$, where $a \in \{1, 2, ..., 9\}$.

a) Determine a so that 5 divides A.

b) Find the units digit of A when a = 4.

<u>Question 5:</u> [5 + 5 marks]

a) Prove:
$$\left(1+\frac{1}{n}\right)^n \le \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$
, where $n \ge 1$ is an integer.
b) Deduce that $\left(1+\frac{1}{n}\right)^n \le 3$ (Hint: use the fact that $2^{n-1} \le n!$).

_