University of Bahrain

College of Science
Mathematics department
First Semester 2006-2007
Final Examination
Math 352
Date: 13 / 01 / 2005

Max. Marks: 50
Duration: 2 hours

Name:
 ID Number:

Instructions:

1) Please check that this test has 5 questions and 6 pages.
2) Write your name, student number, and section in the above box.

Question	Max. Marks	Marks obtained
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Good Luck

Question 1: [5 + 5 marks]

a) Let a and b be two integers such that $\operatorname{gcd}(a, 52)=\operatorname{gcd}(b, 52)=1$. Prove that $a^{12}-b^{12}$ is divisible by 52 .
b) If $\operatorname{gcd}(a, b)=2$, find $\operatorname{lcm}\left(a^{2} b+a, b a^{2}+b\right)$.

Question 2: [5 + 5 marks]

a) Find the remainder when $2^{2^{n}}+1$ is divided by 12 , for $n \geq 1$.
b) Find an integer having the remainder $2,3,4,5$ when dividing by $3,4,5,6$ respectively.

Question 3: [5 + 5 marks]

a) Find all prime numbers p for which $7 p+1$ is a perfect cube.
b) Divide 264 into the sum of two positive integers such that one is divisible by 24 and the other by 9 .

Question 4: [5 + 5 marks]

Let $A=a(17)^{2 \mathrm{n}+1}+(27)^{2 \mathrm{n}+2}$, where $a \in\{1,2, \ldots, 9\}$.
a) Determine a so that 5 divides A.
b) Find the units digit of A when $a=4$.

Question 5: [5 + 5 marks]

a) Prove: $\left(1+\frac{1}{n}\right)^{n} \leq \frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}$, where $n \geq 1$ is an integer.
b) Deduce that $\left(1+\frac{1}{n}\right)^{n} \leq 3$ (Hint: use the fact that $2^{n-1} \leq n!$).

