University of Bahrain
College of Science
Mathematics department
First Semester 2007-2008

Final Examination

Math 352
Duration: 2 hours
Date: 29 / 01 / 2008
Max. Mark: 50
Name:
ID Number:
Section:

Instructions:

1) Please check that this test has 5 questions and 6 pages.
2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Good Luck

Question 1: [5 + 5 marks]

a) Prove that 8 divides $n^{2}-1$ for every odd integer n.
b) Find the remainder when $2(41!)+2^{84}$ is divided by 43 .

Question 2: [5 + 5 marks]

a) For any integer a, find the possible units digit of $a^{2}+a+1$.
b) The Fibonacci numbers $a_{o}, a_{1}, a_{2} \ldots$ are defined by $a_{o}=0, a_{1}=1$, and $a_{n}=a_{n-1}+a_{n-2}$

Prove, by induction, that $a_{n} \geq \alpha^{n-2}$ for $n \geq 1$, where $\alpha=\frac{1+\sqrt{5}}{2}$. (Hint: $\alpha^{2}=\alpha+1$).

Question 3: [5 + 5 marks]

a) Find the least positive integer a so that $6 /(a+1), 5 /(a+2)$ and $11 /(a+7)$.
b) By using linear congruences, solve the congruence equation: $4 x^{2} \equiv 1(\bmod 11)$.

Question 4: [5 + 5 marks]

a) If $\operatorname{gcd}(a, b)=3$, show that $\operatorname{gcd}\left(a^{n+1}, b^{n}\right)=3^{n}$ or $\operatorname{gcd}\left(a^{n+1}, b^{n}\right)=3^{n+1}$.
b) Let $n=2 p$ for some prime number $p>2$. Show that if a is a positive integer such that $\operatorname{gcd}(n, a)=1$, then $a^{n-1} \equiv a(\bmod n)$.

Question 5: [5 + 5 marks]

a) Let a and b be two positive integers. Prove that if a / b, then $\left(2^{a}-1\right) /\left(2^{b}-1\right)$, and deduce that, if $2^{m}-1$ is prime, then m is prime.
b) Prove that if $n>2$ is an integer such that $(n-1)!\equiv-1(\bmod n)$, then n is prime.

