University of Bahrain College of Science Mathematics department First Semester 2007-2008

Final Examination

Math 352 Duration: 2 hours Date: 29 / 01 / 2008 Max. Mark: 50

Name:

ID Number:

Section:

Instructions:

- 1) Please check that this test has 5 questions and 6 pages.
- 2) Write your name, student number, and section in the above box.

Marking Scheme

Questions	Max. Mark	Mark. Obtained
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Good Luck

Question 1: [5 + 5 marks]

a) Prove that 8 divides $n^2 - 1$ for every odd integer *n*.

b) Find the remainder when $2(41!) + 2^{84}$ is divided by 43.

Question 2: [5 + 5 marks]

a) For any integer *a*, find the possible units digit of $a^2 + a + 1$.

b) The Fibonacci numbers $a_o, a_1, a_2 \dots$ are defined by $a_o = 0, a_1 = 1$, and $a_n = a_{n-1} + a_{n-2}$ Prove, by induction, that $a_n \ge \alpha^{n-2}$ for $n \ge 1$, where $\alpha = \frac{1+\sqrt{5}}{2}$. (Hint: $\alpha^2 = \alpha + 1$).

<u>Question 3:</u> [5 + 5 marks]

a) Find the least positive integer a so that 6/(a+1), 5/(a+2) and 11/(a+7).

b) By using linear congruences, solve the congruence equation: $4x^2 \equiv 1 \pmod{11}$.

<u>Question 4:</u> [5+5 marks]

a) If gcd(a, b) = 3, show that $gcd(a^{n+1}, b^n) = 3^n$ or $gcd(a^{n+1}, b^n) = 3^{n+1}$.

b) Let n = 2p for some prime number p > 2. Show that if *a* is a positive integer such that gcd(n, a) = 1, then $a^{n-1} \equiv a \pmod{n}$.

Question 5: [5 + 5 marks]

a) Let *a* and *b* be two positive integers. Prove that if a / b, then $(2^a - 1) / (2^b - 1)$, and deduce that, if $2^m - 1$ is prime, then *m* is prime.

b) Prove that if n > 2 is an integer such that $(n - 1)! \equiv -1 \pmod{n}$, then *n* is prime.