University of Bahrain
College of Science
Mathematics department
First Semester 2008-2009

Final Examination

Math 352
Date: 13 / 01 / 2009

Max. Marks: 50
Duration: 2 hours

Name:
ID Number:

Instructions:

1) Please check that this test has 6 questions and 7 pages.
2) Write your name, student number, and section in the above box.

Question	Max. Marks	Marks obtained
1	10	
2	8	
3	8	
4	8	
5	8	
6	50	
Total		

Good Luck

Question 1: [5 + 5 marks]

a) Find the remainder when $7^{18 n+3}+4$ (16!) is divided by 19 .
b) Use Chinese Reminder Theorem to determine an integer x having the remainder 2, 3, 4 when dividing by $3,4,5$ respectively.

Question 2 [4 + 4 marks]

a) Show that $\varphi(n)=\frac{n}{2}$ if and only if $n=2^{k}$ for some integer $k \geq 1$.
b) Prove that if $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}\left(a-b, a^{2}-a b+b^{2}\right)=1$

Question 3: [4 + 4 marks]

a) Let $p>2$ be a prime number. Prove by induction that $m<p^{m-1}$ for $m=2,3, \ldots$
b) Use (a) to show that n divides $(n-1)$!.

Question 4: [4 + 4 marks]
a) Let $n>1$ be an integer not of the form $6 k+3$. Prove that $n^{2}+2^{n}$ is composite.
b) Find the units digit of $5^{\mathrm{m}}+6^{n}+11^{n+m}$.

Question 5: [4+4 marks]

a) Let b be a positive integer. Show that if b has 0 for units digit, then

$$
(1+b)^{n} \equiv 1+n b+\frac{n(n-1)}{2} b^{2} \quad(\bmod 1000)
$$

b) Use (a) to find the first three digits of $(131)^{412}$.

Question 6: [4 + 4 marks]

a) Let p be a prime number and a an integer such that $\operatorname{g.c.d}(a, p)=1$.

Verify that $x_{o}=a^{p-2} b$ is a solution of the linear congruence $a x \equiv b(\bmod p)$.
b) Apply (a) to solve $8 x \equiv 3(\bmod 31)$.

