University of Bahrain College of Science Mathematics department First Semester 2008-2009

Final Examination

Math 352 Date: 13/01/2009 Max. Marks: 50 Duration: 2 hours

Name:		
ID Number:		

Instructions:

- 1) Please check that this test has 6 questions and 7 pages.
- 2) Write your name, student number, and section in the above box.

Question	Max. Marks	Marks obtained
	10	
<u> </u>	10	
2	8	
3	8	
4	8	
5	8	
6	8	
Total	50	

Good Luck

Question 1: [5 + 5 marks]

a) Find the remainder when $7^{18n+3} + 4$ (16!) is divided by 19.

b) Use Chinese Reminder Theorem to determine an integer *x* having the remainder 2, 3, 4 when dividing by 3, 4, 5 respectively.

Question 2 [4+4 marks]

a) Show that $\varphi(n) = \frac{n}{2}$ if and only if $n = 2^k$ for some integer $k \ge 1$.

b) Prove that if gcd(a, b) = 1, then $gcd(a - b, a^2 - ab + b^2) = 1$

Question 3: [4 + 4 marks]

a) Let p > 2 be a prime number. Prove by induction that $m < p^{m-1}$ for m = 2, 3, ...

b) Use (a) to show that n divides (n-1)!.

<u>Question 4:</u> [4 + 4 marks]

a) Let n > 1 be an integer not of the form 6k + 3. Prove that $n^2 + 2^n$ is composite.

b) Find the units digit of $5^m + 6^n + 11^{n+m}$.

<u>Question 5:</u> [4+ 4 marks]

a) Let b be a positive integer. Show that if b has 0 for **units** digit, then

$$(1+b)^n \equiv 1+n b + \frac{n(n-1)}{2} b^2 \pmod{1000}$$

b) Use (a) to find the **first three digits** of $(131)^{412}$.

<u>Question 6:</u> [4 + 4 marks]

a) Let *p* be a prime number and *a* an integer such that g.c.d(*a*, *p*) = 1. Verify that $x_o = a^{p-2}b$ is a solution of the linear congruence $a x \equiv b \pmod{p}$.

b) Apply (a) to solve $8x \equiv 3 \pmod{31}$.