University of Bahrain
College of Science
Mathematics department
First Semester 2009-2010

## Final Examination

Maths 352
Date: 17/ 01/2010

Max. Marks: 50
Duration: 2 hours

## Name:

ID Number:

## Instructions:

1) Please check that this test has 6 questions and 8 pages.
2) Write your name, student number, and section in the above box.

| Question | Max. Marks | Marks obtained |
| :---: | :---: | :--- |
| 1 | 8 |  |
| 2 | 8 |  |
| 3 | 8 |  |
| 4 | 10 |  |
| 5 | 8 |  |
| 6 | 50 |  |
| Total |  |  |

Good Luck

## Question 1: [4+ 4 marks ]

Let $f$ be a function defined by $f(k)=\binom{n+k}{k-1}$ for $k \geq 1$.
a) Prove that $f(k+1)-f(k)=\binom{n+k}{k}$.
b) Deduce that $\binom{n}{0}+\binom{n+1}{1}+\binom{n+2}{2}+\binom{n+3}{3}+\ldots+\binom{2 n}{n}=\binom{2 n+1}{n}$.

## Question 2 [ 4 + 4 marks]

a) Let $a>1$ be an integer. Prove that $a^{4 n}+4$ is composite.
b) If $\operatorname{gcd}(a, b)=1$, prove that $\operatorname{gcd}\left(a^{2}-b^{2}, a^{3}+b^{3}\right)=|a+b|$.

## Question 3: [4 + 4 marks ]

a) Find an integer $a$ such that $4 / a+1,9 / a+2,25 / a+3$.
b) Prove that if the integer $n$ has $k$ distinct odd prime factors, then

$$
\varphi(n) \equiv 0\left(\bmod 2^{k}\right)
$$

Question 4: $[4+4+2$ marks]
a) Let $a$ and $b$ be two integers. Prove that $(a+b)^{17} \equiv a^{17}+b^{17}(\bmod 17)$.
(Hint: show that 17 divides $\binom{17}{k}$ for every $0<k<17$ )
b) Deduce that $1^{17}+2^{17}+\ldots+(n)^{17} \equiv\left[\frac{n(n+1)}{2}\right]^{17}(\bmod 17)$.
c) Find the remainder when $1^{17}+2^{17}+\ldots+(1000)^{17}$ is divided by 17 .

## Question 5: [4+4 marks]

a) Given an integer $N$ with $n$ digits. Let $M$ the integer formed by reversing the order of the digits. Show that $(N)^{n}-(M)^{n}$ is divisible by 11.
b) Show the equation $x^{2}-10 y=7$ has no solution in the set of integers.

## Question 6: [4 + 4 marks]

a) Let $p$ be an odd prime number and $a$ an integer. Use Fermat's Theorem to prove that $2 p$ divides $a^{2 p}-a^{2}-a^{p}+a$.
b) Let $p$ and $p+2$ be two primes. Use Wilson's Theorem to prove that $p(p+2)$ divides $4(p-1)!+p+4$

