University of Bahrain College of Science Mathematics department First Semester 2009-2010

Final Examination

Maths 352 Date: 17/01/2010 Max. Marks: 50 Duration: 2 hours

Name:

ID Number:

Instructions:

- 1) Please check that this test has 6 questions and 8 pages.
- 2) Write your name, student number, and section in the above box.

Question	Max. Marks	Marks obtained
1	8	
2	8	
3	8	
4	10	
5	8	
6	8	
Total	50	

Good Luck

Question 1: [4+ 4 marks]

Let *f* be a function defined by $f(k) = \binom{n+k}{k-1}$ for $k \ge 1$.

a) Prove that $f(k+1) - f(k) = \binom{n+k}{k}$.

b) Deduce that
$$\binom{n}{0} + \binom{n+1}{1} + \binom{n+2}{2} + \binom{n+3}{3} + \dots + \binom{2n}{n} = \binom{2n+1}{n}$$
.

Question 2 [4+4 marks]

a) Let a > 1 be an integer. Prove that $a^{4n} + 4$ is composite.

b) If gcd(a, b) = 1, prove that $gcd(a^2 - b^2, a^3 + b^3) = |a + b|$.

Question 3: [4 + 4 marks]

a) Find an integer a such that 4/a + 1, 9/a + 2, 25/a + 3.

b) Prove that if the integer n has k distinct odd prime factors, then

 $\varphi(n) \equiv 0 \pmod{2^k}$

<u>Question 4:</u> [4 + 4 + 2 marks]

a) Let *a* and *b* be two integers. Prove that $(a + b)^{17} \equiv a^{17} + b^{17} \pmod{17}$. (Hint: show that 17 divides $\binom{17}{k}$ for every 0 < k < 17)

b) Deduce that
$$1^{17} + 2^{17} + \ldots + (n)^{17} \equiv \left[\frac{n(n+1)}{2}\right]^{17} \pmod{17}$$
.

c) Find the remainder when $1^{17} + 2^{17} + ... + (1000)^{17}$ is divided by 17.

<u>Question 5:</u> [4+4 marks]

a) Given an integer N with n digits. Let M the integer formed by reversing the order of the digits. Show that $(N)^n - (M)^n$ is divisible by 11.

b) Show the equation $x^2 - 10 y = 7$ has no solution in the set of integers.

Question 6: [4 + 4 marks]

a) Let p be an odd prime number and a an integer. Use Fermat's Theorem to prove that 2p divides $a^{2p} - a^2 - a^p + a$.

b) Let p and p + 2 be two primes. Use Wilson's Theorem to prove that p(p + 2) divides 4(p-1)! + p + 4