UNIVERSITY OF BAHRAIN COLLEGE OF SCIENCE DEPARTMENT OF PHYSICS

PHYCS 102 TEST 1

DATE: 24/10/20000		TIME: 55 MIN.
NAME:	ID#:	SECTION:

- 1a) A negatively charged ball of mass 1g is moving downward in vacuum with constant velocity through a uniform vertical electric field $E = 10^3 N/C$.
 - i. Determine the direction of the electric field.
 - ii. Calculate the charge on the ball.
- **b)** An infinitely long line of charge having a uniform charge per unit length λ lies at a distance *x* from a point "O" as shown below: Determine the total electric flux through the surface of a sphere of radius *R* centered at "O" if :
 - i. x > R ii. x < R iii. When the line passing through the center "O".

- 2) In the figure given below, compute :
 - a) The electrostatic force between the two charges.
 - b) The magnitude and direction of electric field at point "P (0.3m, 0.4m)".
 - c) The potential at point "P".

х

-λ

3. A plastic rod having a uniformly distributed charge (-9 μ c). The rod has been bent at 60° circular arc of radius (5 cm) as shown in the figure. Find the electric field at point "O".

- **4.** charged spherical shell of radius *R* has a total charge Q placed inside an uncharged conducting spherical shell that has an inner radius *a* and outer radius *b*. **Find :**
 - a) The electric field every where, i.e. in each region 1,2,3 and 4.
 - b) The induced surface charge densities on the inner and outer surfaces of the uncharged conducting spherical shell.

