UNIVERSITY OF BAHRAIN COLLEGE OF SCIENCE PHYSICS DEPARTMENT

PHYCS 102 TEST 2

DATE: 28/11/2000		TIME: 55 MIN.
NAME:	ID#:	SECTION:

Q1. A charged capacitor of $Q = 150 \ \mu c$ and $C_1 = 10 \ \mu F$ is connected to uncharged capacitor $C_2 = 5 \ \mu F$. Find the final charges on each capacitor.

Q2. In the circuit shown $I_2 = 2A$. Find I_1 , I_3 , ε and V_{ab}

- **Q3.** A parallel plate capacitor has a plate separation d = 1mm and a plate area A = 20 cm². Half of its volume is filled by a dielectric material of constant *K*=1.8. The plates are charged to a potential difference 100V. Find:
 - a) The capacitance .
 - **b)** The electric field inside the dielectric.

100V

- **Q4.** For the system of capacitors shown in the figure find:
 - a) The equivalent capacitance.
 - **b**) The potential difference across C_1 .

60V

- **Q5.** A 600W heater element is designed to operate on 220V. The element is made from Tungsten wire of diameter 0.5 mm. Calculate :
 - a) The heater resistance.
 - **b)** The current density in the wire.
 - c) The electric field in the wire.
 - d) The drift velocity of the electrons in the wire.

For Tungsten use:

Resistivity $\rho = 5.6 \ \mu\Omega.cm$, Density $D = 19.25 \ g/cm^3$,

Atomic mass = 184 g/mole. Consider Tungsten as a monovalent metal.

$$N_{av} = 6.02 \times 10^{23} \text{ (mol)}^{-1}$$

 $\varepsilon_o = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$
 $e = 1.6 \times 10^{-19}\text{C}$

Good luck

- **3.** A charged spherical shell of radius *R* has a total charge Q placed inside an uncharged conducting spherical shell that has an inner radius *a* and outer radius *b*. **Find** :
 - a) The electric field every where, i.e. in each region 1,2,3 and 4.
 - b) The induced surface charge densities on the inner and outer surfaces of the uncharged conducting spherical shell.

