UNIVERSITY OF BAHRAIN
 COLLEGE OF SCIENCE
 PHYSICS DEPARTMENT

PHYCS 102

TEST 3
DATE: 2/1/2001
TIME:55 MIN.
NAME:
ID\#:
SECTION:

Q1. In the circuit shown the capacitor is fully charged. Then, at $t=0$ the switch is thrown from "a" to "b". This causes the current to decrease to 0.5 of its initial value in $40 \mu \mathrm{~s}$.
a) Calculate the value of R.
b) What is the value of the capacitor charge Q at $\mathrm{t}=0$?
c) What is the value of Q at $\mathrm{t}=60 \mu \mathrm{~s}$?

Q2. In the figure shown below, a circular loop of radius $\mathrm{R}=20 \mathrm{~cm}$ carries a current $\mathrm{I}_{1}=2 \mathrm{~A}$ and a very long straight wire carries a current $\mathrm{I}_{2}=5 \mathrm{~A}$. Use superposition method to determine the magnitude and direction of the total magnetic field at the center " O " of the loop.

Q3. A proton is accelerated by 56 KV , enters a uniform magnetic field (\vec{B}) in a direction perpendicular to (\vec{B}). The proton moves in a circular path of radius 8m. Determine :
a) the magnitude of \vec{B},
b) the time required to make 5 revolutions.

Q4. A circular loop of radius $\mathrm{R}=10 \mathrm{~cm}$ consists of 50 closely wrapped turns in which each carries a current of 0.5 A . The loop is placed in a uniform magnetic field of $B=0.4$ T directed in the positive x-axis, as shown in the figure.
a) What is the resultant magnetic force on the loop?
b) Calculate the magnitude of the torque $\vec{\tau}$ on the loop.
c) What is the direction of $\vec{\tau}$? Describe the expected rotation of the loop?

Q5. A short straight wire of length $L=0.3 \mathrm{~m}$ carries a current $I_{2}=2 A$ is placed perpendicular at a distance $\mathrm{d}=0.1 \mathrm{~m}$ near a long straight wire that carries a current $I_{1}=3 A$ as shown in the figure. Determine the magnitude and direction of magnetic force that exerted on the short wire.

$\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{Kg}$.
$\mathrm{E}=1.6 \times 10^{-19} \mathrm{C}$

Good luck

3. A charged spherical shell of radius R has a total charge Q placed inside an uncharged conducting spherical shell that has an inner radius a and outer radius b. Find :
a) The electric field every where, i.e. in each region $1,2,3$ and 4 .
b) The induced surface charge densities on the inner and outer surfaces of the uncharged conducting spherical shell.

