UNIVERSITY OF BAHRAIN COLLEGE OF SCIENCE PHYSICS DEPARTMENT

PHYCS 102 TEST 3

DATE: 2/1/2001		TIME:55 MIN.
NAME:	ID#:	SECTION:

- **Q1.** In the circuit shown the capacitor is fully charged. Then, at t = 0 the switch is thrown from "a" to "b". This causes the current to decrease to 0.5 of its initial value in 40 μ s.
 - a) Calculate the value of R.
 - b) What is the value of the capacitor charge Q at t =0?
 - c) What is the value of Q at $t = 60 \ \mu s$?

Q2. In the figure shown below, a circular loop of radius R=20cm carries a current $I_1 = 2A$ and a very long straight wire carries a current $I_2 = 5A$. Use superposition method to determine the magnitude and direction of the total magnetic field at the center "O" of the loop.

- **Q3.** A proton is accelerated by 56KV, enters a uniform magnetic field (\vec{B}) in a direction perpendicular to (\vec{B}) . The proton moves in a circular path of radius 8m. Determine :
 - **a)** the magnitude of \vec{B} ,
 - b) the time required to make 5 revolutions.

- **Q4.** A circular loop of radius R = 10 cm consists of 50 closely wrapped turns in which each carries a current of 0.5A. The loop is placed in a uniform magnetic field of B = 0.4T directed in the positive x-axis, as shown in the figure.
 - a) What is the resultant magnetic force on the loop?
 - **b)** Calculate the magnitude of the torque $\vec{\tau}$ on the loop.
 - c) What is the direction of $\vec{\tau}$? Describe the expected rotation of the loop?

Q5. A short straight wire of length L=0.3m carries a current $I_2 = 2A$ is placed perpendicular at a distance d= 0.1m near a long straight wire that carries a current $I_1 = 3A$ as shown in the figure. Determine the magnitude and direction of magnetic force that exerted on the short wire.

 $m_p = 1.67 \text{ x } 10^{-27} \text{Kg}.$

 $E = 1.6 \times 10^{-19} C$

Good luck

- **3.** A charged spherical shell of radius *R* has a total charge Q placed inside an uncharged conducting spherical shell that has an inner radius *a* and outer radius *b*. **Find** :
 - a) The electric field every where, i.e. in each region 1,2,3 and 4.
 - b) The induced surface charge densities on the inner and outer surfaces of the uncharged conducting spherical shell.

