University of Bahrain College of Science
 Department of Physics

PHYCS 102 Test (1)

Time: 11:00-11:50 am
 Date: $20^{\text {th }}$ March 2001

```
Name:
ID\#-
Sec:------------
```

Qts	Marks	
1		
2		
3		10
4		
Total	100	

Important data:

$$
\begin{array}{ll}
\mathrm{e}^{-}=\mathrm{e}^{+}=1.6 \times 10^{-19} \mathrm{C} & \mathrm{~m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
\mathrm{~m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} & \mathrm{k}=\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}
\end{array}
$$

$$
\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}
$$

Q1. Three charges are located at the corners of an equilateral triangle as shown in the figure. The electric field at the central point (a) is $2.5 \times 10^{3} \mathrm{~N} / \mathrm{C}$. Compute the following:
a) the value of (Q)
b) the electrical potential at point (a).

a)
$E_{1}=E_{2}=K \frac{Q}{(0.04)^{2}}$
$E_{3}=k \frac{2 Q}{(0.04)^{2}}$
$E_{T}=2.5 \times 10^{3}=K \frac{2 Q}{(0.04)^{2}}-2\left(K \frac{Q}{(0.04)^{2}}\right) \cos 60$
$=K \frac{Q}{(0.04)^{2}} \quad \therefore Q=4.44 \times 10^{-10} \mathrm{C}$
b) $\quad V_{a}=K \frac{Q}{0.04}+K \frac{Q}{0.04}+K \frac{2 Q}{0.04}$

$$
=4 K \frac{Q}{0.04}=399.6 \mathrm{~V}
$$

Q2. An oil drop of charge Q and mass 0.1 g is hanging at rest in an upward electric field $\mathrm{E}=2000 \mathrm{~N} / \mathrm{C}$.
a) Calculate Q (magnitude and sign)
b) If E is increased to $3000 \mathrm{~N} / \mathrm{C}$ find the acceleration of the drop. (Consider the motion in the vacuum).
a) $\mathrm{mg}=Q E$
$\mathrm{Q}=0.5 \times 10^{-6} \mathrm{C}$
b) $\Sigma F=Q E-m g=m a$

$$
=\left(0.5 \times 10^{-6}\right)(3000)-0.1 \times 10^{-3} \times 10=m a
$$

$\mathrm{a}=5 \mathrm{~m} / \mathrm{s}^{2}$

Q3. A rod of length ℓ carrying (Q) is laying on the x -axis as shown in figure (a).
a. Show that the electric field at point O is given by:

$$
E=\frac{-Q}{4 \pi \varepsilon_{0} d(\ell+d)} \vec{i}
$$

b. If an identical rod is placed along the y-axis as shown in figure (b). Find the magnitude and direction of the resultant electric field at point O.

(a)
a.

$$
d E=K \frac{\lambda d x}{x^{2}} \therefore \vec{E}=(-\vec{i}) \int_{S}^{S+\ell} K \lambda \frac{d x}{x^{2}}=\frac{K Q}{S(\ell+S)}(-\vec{i})
$$

b. $\quad E_{x}=E y \quad \therefore E_{\text {res }}=\sqrt{E_{x}^{2}+E y^{2}}=\sqrt{2} \quad E x$

$$
=\sqrt{2} \frac{K Q}{S(\ell+S)}
$$

\vec{E} makes 225° with +x direction.

Q4. A parallel plate capacitor is half filled with a slab of dielectric constant $\mathrm{K}=3$ as shown in the figure below. A voltage of 25 Volts is applied across the capacitor.
a. Find the equivalent capacitance.
b. Find V_{1} and V_{2} and the charge on each plate.

$$
\begin{aligned}
& C_{2}=K \frac{\varepsilon_{O} A}{d}=13.275 \mathrm{pF} \\
& C_{e q}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}=3.318 \mathrm{pF}
\end{aligned}
$$

b. $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}=\mathrm{C}_{\text {eq }} \times 25=82.96 \mathrm{pc}$

$$
\begin{aligned}
& \mathrm{V}_{1}=\frac{Q_{1}}{C_{1}}=18.748 \mathrm{~V} \\
& \mathrm{~V}_{2}=\frac{Q_{2}}{C_{2}}=6.249 \mathrm{~V}
\end{aligned}
$$

Q4. An infinitely long coaxial cylinders of length L and radii a and b are shown in the figure below. The inner cylinder is an insulator and carrying a charge per unit volume $\rho\left(\rho=\mathrm{q}_{\mathrm{a}} / \mathrm{V}_{\mathrm{a}}\right)$. The outer cylinder is a thin conductor and carries a charge per unit length $\lambda(\lambda=q / L)$.
Show that:
a) The electric field at a point inside the insulating cylinder, a distance r from the origin is given by:

$$
E=\frac{\rho r}{2 \varepsilon_{o}}
$$

b) The electric field at a point outside the configuration at a distance R from the center is given by:

