University of Bahrain College of Science Department of Physics

PHYCS 102 Test (1)

Time: 11:00 – 11:50 am

Date: 20th March 2001

Name:	-ID#
Sec:	

Qts	Marks	
1		
2		
3		10
4		10
Total	100	

Important data:

 $e^{-} = e^{+} = 1.6 \text{ x } 10^{-19} \text{C}$

 $m_e = 9.11 \ x \ 10^{-31} kg$

$$k = \frac{1}{4\pi\varepsilon_o} = 9 \times 10^9 \frac{Nm^2}{C^2}$$

 $m_p = 1.67 \text{ x } 10^{-27} \text{ kg}$ g = 10 m/s²

- **Q1.** Three charges are located at the corners of an equilateral triangle as shown in the figure. The electric field at the central point (a) is 2.5×10^3 N/C. Compute the following:
 - **a**) the value of (Q)
 - **b**) the electrical potential at point (a).

a)

$$E_{1} = E_{2} = K \frac{Q}{(0.04)^{2}}$$

$$E_{3} = k \frac{2Q}{(0.04)^{2}}$$

$$E_{T} = 2.5 \times 10^{3} = K \frac{2Q}{(0.04)^{2}} - 2 \left(K \frac{Q}{(0.04)^{2}} \right) \cos 60$$

$$= K \frac{Q}{(0.04)^{2}} \therefore Q = 4.44 \times 10^{-10} C$$
b)

$$V_{a} = K \frac{Q}{0.04} + K \frac{Q}{0.04} + K \frac{2Q}{0.04}$$

$$= 4K \frac{Q}{0.04} = 399.6V$$

- Q2. An oil drop of charge Q and mass 0.1g is hanging at rest in an upward electric field E = 2000 N/C.
 - **a**) Calculate *Q* (magnitude and sign)
 - b) If E is increased to 3000 N/C find the acceleration of the drop. (Consider the \mathbf{A}^{QE} motion in the vacuum).
 - **a**) mg = QEvg = QE $Q = 0.5 \times 10^{-6} c$

٩

+**b**) $\Sigma F = QE - mg = ma$ = (0.5 x 10⁻⁶) (3000) - 0.1 x 10⁻³ x 10 = ma a = 5 m/s²

- Q3. A rod of length ℓ carrying (Q) is laying on the x-axis as shown in figure (a).
 a. Show that the electric field at point O is given by:

$$E = \frac{-Q}{4\pi\varepsilon_o \ d(\ell+d)} \vec{i}$$

b. If an identical rod is placed along the y-axis as shown in figure (b). Find the magnitude and direction of the resultant electric field at point O.

(b)

$$dE = K \frac{\lambda \ dx}{x^2} \therefore \vec{E} = \left(-\vec{i}\right)^{S} \int_{S}^{+\ell} K \lambda \ \frac{dx}{x^2} = \frac{KQ}{S(\ell+S)} \left(-\vec{i}\right)$$

a.

b.
$$E_x = Ey$$
 \therefore $E_{res} = \sqrt{E_x^2 + Ey^2} = \sqrt{2} Ex$
 $= \sqrt{2} \frac{KQ}{S(\ell + S)}$

 \vec{E} makes 225^o with + x direction.

- **Q4.** A parallel plate capacitor is half filled with a slab of dielectric constant K=3 as shown in the figure below. A voltage of 25 Volts is applied across the capacitor.
 - **a.** Find the equivalent capacitance.
 - **b.** Find V_1 and V_2 and the charge on each plate.

$$C_{eq} = \frac{C_1 C_2}{C_1 + C_2} = 3.318 \text{ pF}$$

a.

b.
$$Q_1 = Q_2 = Q = C_{eq} \times 25 = 82.96 \text{ pc}$$

 $V_1 = \frac{Q_1}{C_1} = 18.748 \text{ V}$
 $V_2 = \frac{Q_2}{C_2} = 6.249 \text{ V}$

- Q4. An infinitely long coaxial cylinders of length *L* and radii *a* and *b* are shown in the figure below. The inner cylinder is an insulator and carrying a charge per unit volume ρ ($\rho = q_a/V_a$). The outer cylinder is a thin conductor and carries a charge per unit length λ ($\lambda = q/L$). Show that:
 - a) The electric field at a point inside the insulating cylinder, a distance *r* from the origin is given by:

$$E = \frac{\rho r}{2\varepsilon_o}$$

b) The electric field at a point outside the configuration at a distance *R* from the center is given by:

