University of Bahrain Semester 2001-2002 College of Science Department of Physics

lst

Date : 23/10/01 Time: 11:00 – 12:00

PHYCS 102 Test One

Name:ID#	Section:
----------	----------

Q1. Two point charges having charges $q_1 = 0.6$ nC and $q_2 = -1.2$ nC are fixed as shown in figure.

a. Find the magnitude and direction of the net electric field at point "p".

b. Find the magnitude and direction of electric force on charge $q_3 = -2$ nC intoduced to the point "p".

Q3. Two uniform positive line charges of infinite length are arranged as shown in the figure below.

- a- Find the magnitude and direction of the total electric field at a point 'p'.
- b- Find the magnitude and direction of the electric force on a point charge $q = 2\mu C$ placed at the point "p".

Q3. A positive point charge $q = 2^{\mu c}$ of mass m= 2 x 10⁻³g released from rest in a uniform electric field E= 5x10³ N/C directed a long the x-axis as in figure. Find

- **a.** The electric force on the charge.
- **b.** The potential difference between the points *a* and *b*.
- **c.** The kinetic energy of the charge.

Q4. Consider two spherical gaussion surfaces A_1 and A_2 of radius R = 20 cm, as shown in the figure. The only charge present is the charge $Q = 4\mu C$ at center of surface A_1 .

- **a.** What is the flux through surface A_1 ?
- **b.** What is the flux through surface A_2 ?
- **c.** Find the electric potential field at point C.
- **d.** Find the electric potential field at point *D*.

Q6. A small nonconducting ball of mass m = 1 mg and charge $q = 2 \times 10^{-8} C$ hangs from an insulating thread that makes an angle $\theta = 30^{\circ}$ with a vertical uniformaly charged large nonconducting sheet. Calculate:

- **a.** The magnitude of E Field produced by the sheet.
- **b.** The surface charge density $\boldsymbol{\sigma}$ of the sheet.

Use the following terms:		
$K = 9x10^9 N.m^2/C^2$	$\varepsilon_{\rm o} = 8.854 \text{ x } 10^{-12} \text{C}^2 / \text{N.m}^2,$	$m_e = 9.1 \times 10^{-31} \text{Kg}$
$m_p=1.67 \times 10^{-27} Kg$	$e = 1.602 \text{ x} 10^{-19} \text{C}$	$g = 10 m/s^2$
-	$\mu_{\rm o} = 4\pi \ 10^{-7} \ {\rm T.} \ {\rm m/A}$	$N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Ist Semester 2001/2002PHYCS 102First Exam

Department of Physics

23/10/01

Solutions for the First Exam:

Q1 a)

$$\overrightarrow{E_{1}} = \overrightarrow{i} \frac{Kq_{1}}{(0.4)^{2}} = 33.75 \,\overrightarrow{i} \, N/C \, \overrightarrow{E_{2}} = \frac{Kq_{2}}{(0.5)^{2}} \left(-\frac{4}{5} \overrightarrow{i} + \frac{3}{5} \overrightarrow{j} \right) = -34.56 \overrightarrow{i} + 25.92 \,\overrightarrow{j} , \quad \overrightarrow{E_{p}} = \overrightarrow{E_{1}} + \overrightarrow{E_{2}} = -0.81 \,\overrightarrow{i} + 25.92 \,\overrightarrow{j} , \quad \overrightarrow{E_{p}} = 25.93 \,\text{N/C}, \, \alpha = 91.7^{\circ}$$
b)

$$\overrightarrow{F} = q \overrightarrow{E} = \left(1.62 \overrightarrow{i} - 51.84 \,\overrightarrow{j} \right) nN , \quad F = 51.96 \,\text{N}, \, \alpha = 271.7$$

Q2 a)

$$\overrightarrow{E_{1}} = \frac{2k\lambda}{0.003}\vec{j}, \quad \overrightarrow{E_{2}} = \frac{2k\lambda}{0.004}\vec{i}, \quad \overrightarrow{E_{p}} = \vec{E_{1}} + \vec{E_{2}} = \left(0.9\vec{i} + 1.2\vec{j}\right) \times 10^{7} N/C$$

$$\overrightarrow{E_{p}} = 1.5E7 \text{ N/C}, \quad \alpha = 53.13^{\circ}$$
b)

$$\overrightarrow{F} = q\overrightarrow{E_{p}} = \left(18\vec{i} + 24\vec{j}\right)N, \quad F = 30N, \quad \alpha = 53.13^{\circ}$$

Q3
$$E = 5 \times 10^3 N / C$$
, $F = qE = 0.01N$, $V_{ab} = E.d = 500V$, $E_k = qV_{ab} = 1mJ$

- Q4 a) $\Phi = 4\mu C / \varepsilon_o = 0.452 \cdot 10^6 N \cdot m^2 / C$, b) $E_C = K \cdot Q / (0.2)^2 = 900 k N / C$ c) $V_D = K \cdot Q / (0.3) = 120 k V$
- Q5 $T \sin \theta = qE$ $T \cos \theta = mg$ $\therefore E = \frac{mg \tan \theta}{q} = 288.6 N/C$ $E = \frac{\sigma}{2\varepsilon o}, \ \sigma = 2\varepsilon_o E = 5.1 nC/m^2$