University of Bahrain
Department of Physics

Physics 102 Final Exam Key
Fall 2004
13/1/2005
8:30-10:30

$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$,	$\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{Kg}$,	$\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{Kg}$
$\mathrm{k}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$,	$\varepsilon_{0}=8.84 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$,	$\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} . \mathrm{m} / \mathrm{A}$

Part I: 10 MCQ

Q1- Two identical charges are placed at a distance $\mathrm{r}=0.3 \mathrm{~m}$ as shown in the figure. If the magnitude of the electric force between them is 4 N , then the value of charge in $(\mu \mathrm{C})$ is:

(A) 6.32
(B) 9.49
(C) 12.65
(D) 15.81
(E) 18.97

Q2- A positive point charge +q is placed at the centre of inverted hemispherical surface (half spherical shell) as shown in the figure. The electric flux through the hemispherical surface is:

(A) Zero
(B) q / ε_{0}
(C) $q / 2 \varepsilon_{0}$
(D) $q / 3 \varepsilon_{0}$
(E) $q / 4 \varepsilon_{0}$ Q3- A proton is accelerated from rest at point A . If the charge reaches $\stackrel{\text { Starts from }}{\text { rest }}$
a speed of $v_{\mathrm{B}}=1 \times 10^{5} \mathrm{~m} / \mathrm{s}$ at point B , then the electric potential
difference $\Delta \mathrm{V}$ in (V) between points A and B is:
(A) -104.4
(B) -208.8
(C) -313.1
(D) -417.5
(E) -521.9

Q4- In the circuit shown, if $\mathrm{C}=8 \mu \mathrm{~F}$ then the equivalent capacitance (in $\mu \mathrm{F}$) between the two points a and b is;

(A) 4
(B) 8
(C) 12
(D) 16
(E) 20

Q5- A copper wire curries a current of 3 A at $20^{\circ} \mathrm{C}$. If the temperature coefficient of copper is $\alpha=0.004^{\circ} \mathrm{C}^{-1}$, then the current (in A) in the wire when its temperature increases to $100^{\circ} \mathrm{C}$ is: (Assume that the voltage supplied to the wire remains the same)
(A) 0.76
(B) 1.52
(C) 2.27
(D) 3.03
(E) 3.79

Q6- In the circuit shown, if $\varepsilon=12 \mathrm{~V}$, then the value of potential difference (in V) between the two points a and b is:

(A) 2
(B) 4
(C) 6
(D) 8
(E) 10

Q7- A charge $\mathrm{q}=2 \mu \mathrm{C}$ is moving with a velocity $\vec{v}=[3 \hat{i}+4 \hat{j}] \times 10^{6} \mathrm{~m} / \mathrm{s}$. If the charge enters a magnetic field $\vec{B}=0.4 \hat{k} \mathrm{~T}$, then the magnitude of magnetic force (in N) on the charge is:
(A) 4
(B) 8
(C) 12
(D) 16
(E) 20

Q8- Two long, straight, parallel wires carries currents $\mathrm{I}_{1}=3 \mathrm{I}$ and $\mathrm{I}_{2}=\mathrm{I}$, both directed out of the page as shown in the figure. If the wires are separated by a distance $2 a$ then the magnitude of the net magnetic field at point P that is located at a distance a from I_{2} is given by;

(A) Zero
(B) $\mu_{0} I / 2 a$
(C) $\mu_{0} I / a$
(D) $\mu_{0} I / 4 a$
(E) $3 \mu_{0} \mathrm{I} / \mathrm{a}$

Q9- A current I enters a ring of radius $\mathrm{R}=0.2 \mathrm{~m}$. The current splits into unequal portions $\mathrm{I}_{1}=\mathrm{I} / 4$ and $\mathrm{I}_{2}=3 \mathrm{I} / 4$ as shown in the figure. If $\mathrm{I}=5 \mathrm{~A}$, then the magnitude of the net magnetic field (in $\mu \mathrm{T}$) at the center of the ring (at point P) is:

(A) 3.93
(B) 7.85
(C) 11.78
(D) 15.7
(E) 19.63

Q10- A rod (length 0.2 m) moves on two frictionless horizontal 2Ω conducting rails. A 0.5 T magnetic field is directed into the plane of the loop as shown in the figure. If the rod is moving at a constant speed when $\mathrm{F}_{\text {app }}=1 \mathrm{~N}$, then the value of induced
 voltage (in V) between points a and b is:
(A) 20
(B) 40
(C) 60
(D) 80
(E) 100

Solution of the above questions

Q1: $F=k Q^{2} / r^{2}, Q=6.32 \mu c$

Q2: $\phi=\frac{q}{\epsilon_{o}}($ sphere $), \phi=\frac{1}{2} \frac{q}{\epsilon_{o}}$ (hemisphere $)$
Q3: Conservation of energy: $T_{A}+U_{A}=T_{B}+U_{B}, \quad$ Zero $+e V_{A}=\frac{1}{2} m v_{B}^{2}+e V_{B} \quad \therefore V_{B}-V_{A}=-52.2 \mathrm{~V}$

Q4:

$$
C_{e q}=\left\{C+\frac{(2 C)(2 C)}{2 C+2 C}\right\}=2 C=16 \mu F
$$

Q5:

$$
\left.\begin{array}{l}
I_{100}=\frac{V}{R_{100}} \\
I_{20}=\frac{V}{R_{20}}
\end{array}\right\} I_{100}=\frac{I_{20} R_{20}}{R_{20}[1+\alpha(80)]}=\frac{I_{20}}{1+80 \alpha}=2.27 \mathrm{~A}
$$

Q6: $I=\frac{20}{5+5}=2 A, V_{a b}=\sum I_{k} R_{k}-\Sigma_{k} \varepsilon_{k}, V_{a b}=2(5)-(12)=-2 V,\left|V_{a b}\right|=2 V$
Q7: $\vec{F}_{m}=q(\vec{v} \wedge \vec{B})=2 \times 10^{-6}\left[(3 \vec{i}+4 \vec{j}) 10^{6} \wedge 0.4 \vec{k}\right]=0.8(4 \vec{i}-3 \vec{j}), \quad F_{m}=4 N$
Q8: $B_{p}=B_{1}+B_{2}=\frac{\mu_{o} I_{1}}{2 \pi(3 a)}+\frac{\mu_{o} I_{2}}{2 \pi(a)}=\frac{\mu_{o} I}{\pi a}$ Upwards
Q9: $B_{\text {arc }}=\frac{\mu_{o} I}{4 \pi R} \theta, B=B_{2}-B_{1}=\frac{\mu_{o}(3 I / 4)}{4 \pi R} \pi-\frac{\mu_{o}(I / 4)}{4 \pi R} \pi, B=3.93 \mu T \odot$
Q10: $F_{\text {app }}=F_{\text {mag }}=I_{i} L B \quad$ and $\quad \varepsilon_{i}=I_{i} R, \quad \varepsilon_{i}=(R / L B) F_{\text {app }}=20 \mathrm{~V}$

A rod of length $L=0.5 \mathrm{~m}$ lies along the x -axis and has a uniformy ${ }^{\wedge}$ charge density $\lambda=100 \mathrm{nC} / \mathrm{m}$. Calculate:
(a) The total charge on the rod.
$\mathrm{Q}=\lambda \mathrm{L}=100 * 0.5=50 \mathrm{nC}$

(b) The electric field (give its magnitude and direction) at the origin if $\mathrm{a}=0.1 \mathrm{~m}$.
$\mathrm{dE}=\mathrm{kdq} / \mathrm{r}^{2}, \quad \mathrm{dq}=\lambda \mathrm{dl}=\lambda \mathrm{dx}$,
$E=\int \frac{k d q}{r^{2}}=\int_{a}^{a+L} \frac{k \lambda d x}{x^{2}}=k \lambda \int_{a}^{a+L} \frac{d x}{x^{2}}=-\left.k \lambda \frac{1}{x}\right|_{a} ^{a+L}=k \lambda \frac{L}{a(a+L)}$
$E=\frac{k Q}{a(a+L)}=\frac{9 \times 10^{9} * 50 \times 10^{-9}}{0.1(0.1+0.5)}=7500 \quad N / C$
$\vec{E}=7500(-\vec{i}) N / C$
(c) The electric force (give its magnitude and direction) on an electron placed at the origin.

$$
\overrightarrow{F_{e}}=q \vec{E}=(-e)(7500)(-\vec{i})=1.2 \times 10^{-15} \vec{i} N
$$

(d) The magnitude of the electron's initial acceleration at the origin.

$$
F=m a, \quad a=\frac{1.2 \times 10^{-15}}{9.1 \times 10^{-31}}=1.32 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2}
$$

In the circuit shown, the current $\mathrm{I}_{1}=1 \mathrm{~A}$. Find:
(a) The magnitude of the potential difference between points a and b .

$$
V_{a b}=1 \times 10-6=4 V
$$

(b) The unknown emf $\boldsymbol{\varepsilon}$.

$$
\begin{array}{ll}
V_{a b}=4=-5 I_{2}+10, \quad I_{2}=1.2 A & \therefore I_{3}=0.2 \\
V_{a b}=4=(0.2)(25)-\varepsilon & \therefore \varepsilon=1 V
\end{array}
$$

$$
\text { or, Left loop :(1)(10)+5(} \left.I_{2}\right)=16 \quad \text { gives } I_{2}=1.2 \mathrm{~A}
$$

$$
I_{2}=I_{1}+I_{3} \quad \text { gives } I_{3}=0.2 \mathrm{~A}
$$

$$
\text { Right loop : } 25 I_{3}+5 I_{2}=10+\varepsilon, \quad \text { gives } \varepsilon=1 V
$$

(c) The power dissipated in the 5Ω resistor.

$$
P=I_{2}^{2}(5)=7.2 \mathrm{~W}
$$

A coaxial cable consists of a thin conducting wire concentric with a conducting tube with inner radius $\mathrm{a}=0.2 \mathrm{~m}$ and outer radius $\mathrm{b}=0.3 \mathrm{~m}$ as shown in the figure. The wire and the tube carry equal currents $\mathbf{I}=\mathbf{1 0 A}$ in opposite directions. The current in the tube is distributed uniformly over its cross section. Calculate the magnitude of the magnetic field at the following points:
(a) Point P_{1} that is located at a distance 0.1 m from the axis of the conductor.

$\oint B . d l=\mu_{o} I_{e n}$
$B \times 2 \pi r=\mu_{o} I, B=\frac{\mu_{o} I}{2 \pi r}$
$B\left(P_{1}\right)=\frac{4 \pi \times 10^{-7} \times 10}{2(\pi)(0.1)}=20 \mu T$

Front view
(b) Point P_{2} that is located at a distance 0.25 m from the axis of the conductor.
$\oint B . d l=\mu_{o} I_{e n c}=\mu_{o}\left[I-J A_{i n}\right]$
$B \times 2 \pi r=\mu_{o}\left[I-J\left[\pi\left(r^{2}-a^{2}\right)\right]\right] \quad J=\frac{I}{A}=\frac{I}{\pi\left[b^{2}-a^{2}\right]}$
$B=\frac{\mu_{o}}{2 \pi r}\left[I-\frac{I}{\pi\left[b^{2}-a^{2}\right]} \pi\left(r^{2}-a^{2}\right)\right]$
$B=\frac{\mu_{o} I}{2 \pi r}\left[1-\frac{\left(r^{2}-a^{2}\right)}{\left(b^{2}-a^{2}\right)}\right]$
$B\left(P_{2}\right)=\frac{4 \pi \times 10^{-7} \times 10}{2 \pi(0.25)}\left[1-\frac{\left[(0.25)^{2}-(0.2)^{2}\right]}{\left[(0.3)^{2}-(0.2)^{2}\right]}\right]=4.4 \mu T$
(c) Point P_{3} that is located at a distance 0.5 m from the axis of the conductor.
$\oint B . d l=\mu_{o} I_{e n}=\mu_{o}[I-I]=$ Zero
$B\left(P_{3}\right)=$ Zero

In the figure shown, a square loop of side $a=0.2 \mathrm{~m}$ and resistance $\mathrm{R}=0.5 \Omega$. The loop lies at a distance a above a long, straight wire carrying current that is varying with time according to the relation: $\mathrm{I}=10 \sin (100 \pi \mathrm{t})$ where I is in (A) and t in (s).
(a) Show that the magnetic flux (Φ) through the square loop is given by:

$$
\Phi=\frac{\mu_{0} \mathrm{I}}{2 \pi} \mathrm{a} \ln (2)
$$

$\Phi=\int_{s} B d A \cos \theta=\int_{a}^{2 a} \frac{\mu_{o} I}{2 \pi y}(a d y) \cos (0)$
$\Phi=\int_{a}^{2 a} \frac{\mu_{o} I a}{2 \pi} \frac{d y}{y}=\frac{\mu_{o} I a}{2 \pi} \operatorname{In}(2)$
(b) Determine the induced emf (in $\mu \mathrm{V}$), as a function of time, in the loop.

$$
\begin{aligned}
& \varepsilon_{\text {ind }}=-\frac{d \Phi}{d t}=-\frac{d}{d t}\left[\frac{\mu_{o} 2 \sin (100 \pi t)}{2 \pi} \operatorname{Ln} 2\right]=\left(-4 \pi \times 10^{-7}\right)(100 \operatorname{Ln} 2) \cos (100 \pi t) \\
& \varepsilon_{\text {ind }}=-87.1 \cos (100 \pi t) \quad \mu V
\end{aligned}
$$

(c) Determine the maximum induced current (in $\mu \mathrm{A}$) in the loop.

$$
\begin{aligned}
& I_{\text {ind }}=\frac{\varepsilon_{\text {ind }}}{R}=-\frac{87.1}{0.5} \cos (100 \pi t)=-174.2 \cos (100 \pi t) \mu \mathrm{A} \\
& {\left[I_{\text {ind }}\right]_{\max }=174.2 \mu \mathrm{~A}}
\end{aligned}
$$

