Name: \qquad ID no.: \qquad
Instructor Name: \qquad Section: \qquad

$$
\begin{aligned}
\mathrm{m}_{\mathrm{p}} & =1.67 \times 10^{-27} \mathrm{Kg}, \\
\mathrm{~g} & =10 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$\mathrm{k}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$,
$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$,

Problem 1:

Eight identical charges each of $\mathrm{q}=+10 \mu \mathrm{C}$ are located on the rim of a circle $(\mathrm{R}=0.3 \mathrm{~m})$ while a charge $\mathrm{Q}=5 \mu \mathrm{C}$ is located at the centre as shown in the figure.
(a)- Show on the diagram all the electric forces that are acting on the charge Q .
(b)- Find the net electric force exerted on the charge Q .

All eight forces are equal in magnitude, and

$$
\vec{F}_{n e t}=\sum_{k=1}^{8} \vec{F}=\text { Zero }
$$

(c)- If the charge q_{3} is removed, then calculate the net electric force exerted on the charge Q (give its magnitude and direction).
$\overrightarrow{F_{n e t}}=\sum_{k=1}^{8} \vec{F}_{k}=\vec{F}_{7}$
$F_{7}=\frac{k Q q_{7}}{R^{2}}=5 \mathrm{~N}$
$\overrightarrow{F_{n e t}}=F_{7} \hat{i}=5 \hat{i}(\mathrm{~N})$

Problem 2:

(I)- A positive charge Q is uniformly distributed on a thin rod of length 2 L . If the rod is placed as shown in the figure then find the magnitude and direction of the electric field at point P that is located on the bisector line.

$E_{X}=$ Zero, By Symmetry
$d E_{y}=d E \sin \theta$
$E_{y}=\int \frac{a}{r} \frac{k d q}{r^{2}}$
$r=\sqrt{x^{2}+a^{2}} \quad d q=\lambda d x$
$\left.E_{y}=k \lambda a \int_{-L}^{L} \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 4}}=k \lambda a \frac{x}{a^{2} \sqrt{x^{2}+a^{2}}}\right]_{-L}^{L}$
$E_{y}=\frac{k Q}{a \sqrt{L^{2}+a^{2}}}, \quad Q=2 \lambda L$
$\vec{E}_{p}=\frac{k Q}{a \sqrt{L^{2}+a^{2}}} \hat{j}$

You may use the following:

$$
\int \frac{d u}{\left(u^{2}+c^{2}\right)^{3 / 2}}=\frac{u}{c^{2} \sqrt{u^{2}+c^{2}}}
$$

(II)- Find the magnitude and direction of the electric field required to suspend (remain stationary) a charge $\mathrm{Q}=-2 \mathrm{nC}$ and mass $\mathrm{m}=4 \times 10^{-8} \mathrm{~kg}$ in air near the earth's surface.

E must be downward so \vec{F}_{e} is upward

Earth's surface
$F_{e}=W, Q E=m g$
$\therefore E=200 \frac{\mathrm{~N}}{\mathrm{C}}$

Problem 3:

A thick insulating spherical shell of radii a and b is concentric with another thick conducting spherical shell of radii c and d as shown in the figure. The insulating shell has a total charge $+Q$ distributed uniformly throughout its volume (i.e. has a uniform volume charge density ρ). The conducting shell has a net charge of +3 Q .
(a)-Calculate the electric field at the following points:

Point P1:

$\oint \overrightarrow{E_{1}} \cdot \overrightarrow{d A}=\frac{q_{\text {in }}}{\epsilon_{o}}=$ zero
Conducting shell of net charge +3 Q

Point P_{2} :

$\oint \overrightarrow{E_{2}} \cdot \overrightarrow{d A}=\frac{q_{i n}}{\epsilon_{o}}, \quad E_{2} \times 4 \pi r^{2}=\frac{\rho V i n}{\epsilon_{o}}=\rho \frac{4 \pi}{3}\left(r^{3}-a^{3}\right)$
$E_{2}=\frac{\rho}{3 \epsilon_{o}} \frac{\left(r^{3}-a^{3}\right)}{r^{2}}$

Point P_{3} :

$\oint \overrightarrow{E_{3}} \cdot \overrightarrow{d A}=\frac{q_{i n}}{\epsilon_{o}}, E_{3} \times 4 \pi r^{2}=\frac{Q}{\epsilon_{o}}$
$E_{3}=\frac{k Q}{r^{2}}$

Point \mathbf{P}_{4} :

$\oint \overrightarrow{E_{4}} \cdot \overrightarrow{d A}=\frac{q_{i n}}{\epsilon_{o}}, \quad \quad E_{4} \times 4 \pi r^{2}=\frac{Q-Q}{\epsilon_{o}}=$ Zero
$E_{4}=$ Zero, inside a conductor

Point P_{5} :

$$
\begin{aligned}
& \oint \vec{E}_{5} \cdot \overrightarrow{d A}=\frac{q_{i n}}{\epsilon_{o}}, \quad E_{5} \times 4 \pi r^{2}=\frac{+Q-Q+Q+3 Q}{\epsilon_{o}}=\frac{4 Q}{\epsilon_{o}} \\
& E_{5}=\frac{4 k Q}{r^{2}}
\end{aligned}
$$

(b) Calculate the surface charge densities on the inner $\left(\sigma_{c}\right)$ and outer $\left(\sigma_{d}\right)$ surfaces of the thick conducting shell.

$$
\sigma_{c}=\frac{Q_{c}}{A}=\frac{-Q}{4 \pi c^{2}}, \quad \sigma_{d}=\frac{Q_{d}}{A}=\frac{Q+3 Q}{4 \pi d^{2}}=\frac{4 Q}{4 \pi d^{2}}
$$

Problem 4:

A 10 nC charge is uniformly distributed on a thin ring of radius $\mathrm{a}=0.3 \mathrm{~m}$. The ring is placed in the $\mathrm{x}-\mathrm{z}$ plane as shown in the figure.
(a)- Find an expression for the electric potential at point A that is located on the ring axis at a distance y_{A} from its centre.
$V_{A}=\int \frac{k d q}{r}=\int \frac{k \lambda d \ell}{\sqrt{a^{2}+y_{A}^{2}}}$
$V_{A}=\frac{k \lambda}{\sqrt{a^{2}+y_{A}^{2}}} \int d \ell=\frac{k \lambda L}{\sqrt{a^{2}+y_{A}^{2}}}=\frac{k Q}{\sqrt{a^{2}+y_{A}^{2}}}$
(b)- Calculate the electric potential difference $\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}$ between points A and B if $\mathrm{y}_{\mathrm{A}}=0.3 \mathrm{~m}$ and $y_{B}=0.9 \mathrm{~m}$.
$V_{A}=\frac{k Q}{\sqrt{a^{2}+y_{A}^{2}}}=212.13 \mathrm{~V}$
$V_{B}=\frac{k Q}{\sqrt{a^{2}+y_{B}^{2}}}=94.86 \mathrm{~V}$
$\Delta V=V_{B}-V_{A}=94.86-212.13=-117.3 \mathrm{~V}$
(c)- If a charge of $\mathrm{q}=2 \mu \mathrm{C}$ and mass $\mathrm{m}=2 \times 10^{-6} \mathrm{~kg}$ starts from rest at point A , then find its final speed at point B.
$\Delta K=-\Delta U=-q \Delta V$
$\frac{1}{2} m v_{B}^{2}-\frac{1}{2} m v_{A}^{2}=-2 \times 10^{-6}(-117.3), v_{A}=0$
$V_{B}=15.3 \mathrm{~m} / \mathrm{s}$

